Agronomy for Sustainable Development

, Volume 30, Issue 2, pp 311–348 | Cite as

Defence mechanisms of Brassicaceae: implications for plant-insect interactions and potential for integrated pest management. A review

Review article

Abstract

Brassica crops are grown worldwide for oil, food and feed purposes, and constitute a significant economic value due to their nutritional, medicinal, bioindustrial, biocontrol and crop rotation properties. Insect pests cause enormous yield and economic losses in Brassica crop production every year, and are a threat to global agriculture. In order to overcome these insect pests, Brassica species themselves use multiple defence mechanisms, which can be constitutive, inducible, induced, direct or indirect depending upon the insect or the degree of insect attack. Firstly, we give an overview of different Brassica species with the main focus on cultivated brassicas. Secondly, we describe insect pests that attack brassicas. Thirdly, we address multiple defence mechanisms, with the main focus on phytoalexins, sulphur, glucosinolates, the glucosinolate-myrosinase system and their breakdown products. In order to develop pest control strategies, it is important to study the chemical ecology, and insect behaviour. We review studies on oviposition regulation, multitrophic interactions involving feeding and host selection behaviour of parasitoids and predators of herbivores on brassicas. Regarding oviposition and trophic interactions, we outline insect oviposition behaviour, the importance of chemical stimulation, oviposition-deterring pheromones, glucosinolates, isothiocyanates, nitriles, and phytoalexins and their importance towards pest management. Finally, we review brassicas as cover and trap crops, and as biocontrol, biofumigant and biocidal agents against insects and pathogens. Again, we emphasise glucosinolates, their breakdown products, and plant volatile compounds as key components in these processes, which have been considered beneficial in the past and hold great prospects for the future with respect to an integrated pest management.

Brassicas insect pests chemical ecology trophic levels glucosinolates isothiocyanates defence mechanisms biocontrol trap crops integrated pest management 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acheampong S., Stark J.D. (2004) Can reduced rates of pymetrozine and natural enemies control the cabbage aphid, Brevicoryne brassicae (Homoptera: Aphididae), on broccoli, Int. J. Pest Manage. 50, 275–279.CrossRefGoogle Scholar
  2. Agarwala B.K., Datta N. (1999) Life history response of the mustard aphid Lipaphis erysimi to phenological changes in its host, J. Bioscience. 24, 224–231.CrossRefGoogle Scholar
  3. AGBIOS (2009) GM database, The AGBIOS Company, Ontario, Canada, http://www.agbios.com/dbase.php. Google Scholar
  4. Agbogba B., Powell W. (2007) Effect of the presence of a nonhost herbivore on the response of the aphid parasitoid Diaeretiella rapae to host-infested cabbage plants, J. Chem. Ecol. 33, 2229–2235.PubMedCrossRefGoogle Scholar
  5. Agelopoulos N.G., Keller M.A. (1994a) Plant-natural enemy association in the tritrophic system, Cotesia rubecula-Pieris rapae-brassiceae (cruciferae): I. Sources of infochemicals, J. Chem. Ecol. 20, 1725–1734.CrossRefGoogle Scholar
  6. Agelopoulos N.G., Keller M.A. (1994b) Plant-natural enemy association in the tritrophic system Cotesia rubecula-Pieris rapae-brassicaceae (cruciferae): II. Preference of C. rubecula for landing and searching, J. Chem. Ecol. 20, 1735–1748.CrossRefGoogle Scholar
  7. Agelopoulos N.G., Keller M.A. (1994c) Plant-natural enemy association in the tritrophic system, Cotesia rubecula-Pieris rapae-brassicaceae (cruciferae) III: Collection and identification of plant and frass volatiles, J. Chem. Ecol. 20, 1955–1967.CrossRefGoogle Scholar
  8. Agrawal A.A. (2000) Mechanisms, ecological consequences and agricultural implications of tritrophic interactions, Curr. Opin. Plant Biol. 3, 329–335.PubMedCrossRefGoogle Scholar
  9. Agrawal A.A., Kurashige N.S. (2003) A role for isothiocyanates in plant resistance against the specialist herbivore Pieris rapae, J. Chem. Ecol. 29, 1403–1415.PubMedCrossRefGoogle Scholar
  10. Agrawal A.A., Laforsch C., Tollrian R. (1999) Transgenerational induction of defences in animals and plants, Nature 401, 60–63.CrossRefGoogle Scholar
  11. AgroAtlas (2009) Interactive Agricultural Ecological Atlas of Russia and Neighbouring Countries. Economic Plants and their Diseases, Pests and Weeds, Russia, http://www.agroatlas.ru. Google Scholar
  12. Angus J.F., Gardner P.A., Kirkegaard J.A., Desmarchelier J.M. (1994) Biofumigation: isothiocyanates released from Brassica roots inhibit growth of the take-all fungus, Plant Soil 162, 107–112.CrossRefGoogle Scholar
  13. Arab A., Bento J.M.S. (2006) Plant volatiles: new perspectives for research in Brazil, Neotrop. Entomol. 35, 151–158.PubMedCrossRefGoogle Scholar
  14. Aslam M., Ahmad M. (2001) Effectiveness of some insecticides against mustard aphid, Lipaphis erysimi (Kalt.) (Aphididae: Homoptera) on three different crops, J. Res. (Science) 12, 19–25.Google Scholar
  15. Åhman I. (1985) Oviposition behaviour of Dasineura brassicae on a high versus a low-quality Brassica host, Entomol. Exp. Appl. 39, 247–253.CrossRefGoogle Scholar
  16. Åhman I. (1986) Toxicities of host secondary compounds to eggs of the Brassica specialist Dasineura brassicae, J. Chem. Ecol. 12, 1481–1488.CrossRefGoogle Scholar
  17. Bajwa W.I., Kogan M. (2002) Compendium of IPM Definitions (CID) — What is IPM and how is it defined in the Worldwide Literature? IPPC Publication No. 998, Integrated Plant Protection Center (IPPC), Oregon State University, Corvallis, OR, 97331, USA.Google Scholar
  18. Baldridge G.D., O’Neill N.R., Samac D.A. (1998) Alfalfa (Medicago sativa L.) resistance to the root-lesion nematode, Pratylenchus penetrans: defense-response gene mRNA and isoflavonoid phytoalexin level in roots, Plant Mol. Biol. 38, 999–1010.PubMedCrossRefGoogle Scholar
  19. Baldwin I.T., Kessler A., Halitschke R. (2002) Volatile signaling in plantplant- herbivore interactions: what is real, Curr. Opin. Plant Biol. 5, 351–354.PubMedCrossRefGoogle Scholar
  20. Barari H., Cook S.M., Clark S.J., Williams I.H. (2005) Effect of a turnip rape (Brassica rapa) trap crop on stem-mining pests and their parasitoids in winter oilseed rape (Brassica napus), BioControl 50, 69–86.CrossRefGoogle Scholar
  21. Barker A., Molotsane R., Müller C., Schaffner U., Städler E. (2006) Chemosensory and behavioural responses of the turnip sawfly, Athalia rosae, to glucosinolates and isothiocyanates, Chemoecology 16, 209–218.CrossRefGoogle Scholar
  22. Barron A.B. (2001) The life and death of Hopkins’ host-selection principle, J. Insect Behav. 14, 725–737.CrossRefGoogle Scholar
  23. Bartlet E., Williams I.H. (1991) Factors restricting the feeding of the cabbage stem flea beetle (Psylliodes chrysocephala), Entomol. Exp. Appl. 60, 233–238.CrossRefGoogle Scholar
  24. Bartlet E., Blight M., Hick A., Williams I.H. (1993) The responses of the cabbage seed weevil (Ceutorhynchus assimilis) to the odour of oilseed rape (Brassica napus) and to some volatile isothiocyanates, Entomol. Exp. Appl. 68, 295–302.ai]Bones A.M., Slupphaug G. (1989) Purification, characterization and partial amino acid sequencing of gB-thioglucosidase from rapeseed, J. Plant Physiol. 134, 722–729.CrossRefGoogle Scholar
  25. Bones A.M., Thangstad O.P., Haugen O., Espevik T. (1991) Fate of myrosin cells — Characterization of monoclonal antibodies against myrosinase, J. Exp. Bot. 42, 1541–1549.CrossRefGoogle Scholar
  26. Bones A.M., Visvalingam S., Thangstad O.P. (1994) Sulphate can induce differential expression of thioglucoside glucohydrolases (myrosinases), Planta 193, 558–566.CrossRefGoogle Scholar
  27. Borregaard N., Elsbach P., Ganz T., Garred P., Svejgaard A. (2000) Innate immunity: from plants to humans, Immunol. Today 21, 68–70.PubMedCrossRefGoogle Scholar
  28. Boydston R.A. (2004) Take cover from the elements — Brassica cover crops can control weeds and reduce the use of crop protectants in vegetable rotations, American Vegetable Grower, March 2004, pp. 18–19.Google Scholar
  29. Bridges M., Jones A.M.E., Bones A.M., Hodgson C., Cole R., Bartlet E., Wallsgrove R., Karapapa V.K., Watts N., Rossiter J.T. (2002) Spatial organization of the glucosinolate-myrosinase system in Brassica specialist aphids is similar to that of the host plant, Proc. R. Soc. Lond. B 269, 187–191.CrossRefGoogle Scholar
  30. Bromand B. (1990) Diversities in oilsed rape growing within the western palaearctic regional section, IOBC/WPRS Bull. 13, 7–31.Google Scholar
  31. Brown P.D., Morra M.J. (1997) Control of soil-borne plant pests using glucosinolate-containing plants, Adv. Agron. 61, 67–231.Google Scholar
  32. Bruinsma M., Van Dam N., Van Loon J., Dicke M. (2007) Jasmonic acidinduced changes in Brassica oleracea affect oviposition preference of two specialist herbivores, J. Chem. Ecol. 33, 655–668.PubMedCrossRefGoogle Scholar
  33. Bruinsma M., Posthumus M.A., Mumm R., Mueller M.J., Van Loon J., Dicke M. (2009) Jasmonic acid-induced volatiles of Brassica oleracea attract parasitoids: effects of time and dose, and comparision with induction by herbivores, J. Exp. Bot., DOI: 10.1093/jxb/erp101.Google Scholar
  34. Bukovinszky T., Poelman E.H., Gols R., Prekatsakis G., Vet L.E., Harvey J.A., Dicke M. (2009) Consequences of constitutive and induced variation in plant nutritional quality for immune defence of a herbivore against parasitism, Oecologia 160, 299–308.PubMedCrossRefGoogle Scholar
  35. Burmeister W., Härtel F., Brandt A., Rossiter J.T., Bones A.M. (2005) The crystal structure at 1.1 Å resolution of myrosinase from the aphid Brevicoryne brassicea shows its close similarity with gB-glucosidases, Insect Biochem. Molec. 35, 1311–1320.CrossRefGoogle Scholar
  36. Capinera J.L. (2004) Cabbageworm, Pieris rapae (Linnaeus) (Lepidoptera: Pieridae), Encyclopedia of Entomology, Kluwer, Dordrecht, The Netherlands, pp. 444–445.Google Scholar
  37. Capinera J.L. (2008) Cabbage looper, Trichoplusia ni (Hübner) (Insecta: Lepidoptera: Noctuidae), EENY-116, Florida Cooperative Extension Service, University of Florida IFAS Extension.Google Scholar
  38. Cardé R.T., Millar J.G. (2004) Advances in insect chemical ecology, Cambridge Univ. Press, Cambridge, UK.CrossRefGoogle Scholar
  39. Carlsson J., Lagercrantz U., Sundström J., Teixeira R., Wellmer F., Meyerowitz E., Glimelius K. (2007) Microarray analysis reveals altered expression of a large number of nuclear genes in developing cytoplasmic male sterile Brassica napus flowers, Plant J. 49, 452–462.PubMedCrossRefGoogle Scholar
  40. Cartea M.E., Padilla G., Vilar M., Velasco P. (2009) Incidence of the major Brassica pests in northeastern Spain, J. Econ. Entomol. 102, 767–773.PubMedCrossRefGoogle Scholar
  41. Chadchawan S, Bishop J., Thangstad O.P., Bones A.M., Mitchell-Olds T., Bradley D. (1993) Arabidopsis cDNA sequence encoding myrosinase, Plant Physiol. 103, 671–672.PubMedCrossRefGoogle Scholar
  42. Charleston D.S., Kfir R. (2000) The possibility of using Indian mustard, Brassica juncea, as a trap crop for the diamondback moth Plutella xylostella in South Africa, Crop Prot. 19, 455–460.CrossRefGoogle Scholar
  43. Chattopadhyay C., Agrawal R., Kumar A., Singh Y.P., Roy S.K., Khan S.A., Bhar L.M., Chakravarthy N.V.K., Srivastava A., Patel B.S., Srivastava B., Singh C.P., Mehta S.C. (2005) Forecasting of Lipaphis erysimi on oilseed Brassicas in India — a case study, Crop Prot. 24, 1042–1053.CrossRefGoogle Scholar
  44. Chow J.K., Akhtar Y., Isman M.B. (2005) The effects of larval experience with a complex plant latex on subsequent feeding and oviposition by the cabbage looper moth: Trichoplusia ni (Lepidoptera: Noctuidae), Chemoecology 15, 129–133.CrossRefGoogle Scholar
  45. Cintas N.A., Koike S.T., Bull C.T. (2002) A new pathovar, Pseudomonas syringae pv. alisalensis pv. nov., proposed for the causal agent of bacterial blight of broccoli and broccoli raab, Plant Dis. 86, 992–998.CrossRefGoogle Scholar
  46. Cirio V. (1971) Reperti sul meccanismo stimolo-riposta nell’ ovideposizione del Dacus oleae Gmelin (Diptera, Trypetidae), Redia 52, 557–600.Google Scholar
  47. Clark A. (2007) Managing cover crops profitably (3rd ed.), Sustainable Agricultural Network (SAN), Handbook series Book 9, A publication of the Sustainable Agriculture Network with funding by the Sustainable Agriculture Research and Education Program of CSREES, U.S. Department of Agriculture. Beltsville, MD, USA.Google Scholar
  48. Clossais-Bernard N., Larher F. (1991) Physiological role of glucosinolates in Brassica napus, Concentration and distribution pattern of glucosinolates among plant organs during a complete life cycle, J. Sci. Food Agr. 56, 25–38.CrossRefGoogle Scholar
  49. Cole R.A. (1994) Locating a resistance mechanism to the cabbage aphid in two wild Brassicas, Entomol. Exp. Appl. 71, 23–31.CrossRefGoogle Scholar
  50. Cole R.A. (1997) Comparison of feeding behaviour of two Brassica pests Brevicoryne brassicae and Myzus persicae on wild and cultivated Brassica species, Entomol. Exp. Appl. 85, 135–143.CrossRefGoogle Scholar
  51. Cook S.M., Smart L.E., Martin J.L., Murray D.A., Watts N.P., Williams I.H. (2006) Exploitation of host plant preferences in pest management strategies for oilseed rape (Brassica napus), Entomol. Exp. Appl. 119, 221–229.CrossRefGoogle Scholar
  52. Cook S.M., Khan Z.R., Pickett J.A. (2007a) The use of push-pull strategies in integrated pest management, Annu. Rev. Plant Biol. 52, 375–400.Google Scholar
  53. Cook S.M., Rasmussen H., Birkett M., Murray D., Pye B., Watts N., Williams I. (2007b) Behavioural and chemical ecology underlying the success of turnip rape (Brassica rapa) trap crops in protecting oilseed rape (Brassica napus) from the pollen beetle (Meligethes aeneus), Arthropod-Plant Interact. 1, 57–67.CrossRefGoogle Scholar
  54. Cooper R.M., Resende M.L.V., Flood J., Rowan M.G., Beale M.H., Potter U. (1996) Detection and cellular localization of elemental sulphur in disease resistant genotypes of Theobroma cacao, Nature 379, 159–162.CrossRefGoogle Scholar
  55. Cox C.J., Lambert B., McCarty L.B., Toler, J.E., Lewis, S.A., Bruce Martin S. (2006) Suppressing sting nematodes with Brassica sp., poinsettia, and spotted spurge extracts, Agron. J. 98, 962–967.CrossRefGoogle Scholar
  56. Damodaram T., Hegde D.M. (2002) Oilseeds Situation: A Statistical Compendium 2002, Directorate of Oilseeds Research, Hyderabad 500030, India, p. 471.Google Scholar
  57. Dandurand L.M., Mosher R.D., Knudsen G.R. (2000) Combined effects of Brassica napus seed meal and Trichoderma harzianum on two soilborne plant pathogens, Can. J. Microbiol. 46, 1051–1057.PubMedGoogle Scholar
  58. David W.A.L., Gardiner B.O.C. (1966) The effect of sinigrin on the feeding of Pieris brassicae L. larvae transferred from various diets, Entomol. Exp. Appl. 9, 95–98.CrossRefGoogle Scholar
  59. Dawson G.W., Griffiths D.C., Pickett J.A., Wadhams L.J., Woodcock C.M. (1987) Plant-derived synergists of alarm pheromone from turnip aphid, Lipaphis (Hyadaphis) erysimi (Homoptera, Aphididae), J. Chem. Ecol. 13, 1663–1671.CrossRefGoogle Scholar
  60. Dawson G.W., Griffiths D.C., Merritt L.A. Mudd A., Pickett J.A., Wadhams L.J., Woodcock C.M. (1990) Aphid semiochemicals — A review, and recent advances on the sex pheromone, J. Chem. Ecol. 16, 3019–3030.CrossRefGoogle Scholar
  61. De Boer J., Hordijk C., Posthumus M., Dicke M. (2008) Prey and nonprey arthropods sharing a host plant: Effects on induced volatile emission and predator attraction, J. Chem. Ecol. 34, 281–290.PubMedCrossRefGoogle Scholar
  62. De Jong R., Städler E. (1999) The influence of odour on the oviposition behaviour of the cabbage root fly, Chemoecology 9, 151–154.CrossRefGoogle Scholar
  63. De Jong R., Maher N., Patrian B. Städler E., Winkler T. (2000) Rutabaga roots, a rich source of oviposition stimulants for the cabbage root fly, Chemoecology 10, 205–209.CrossRefGoogle Scholar
  64. Dicke M. (1999) Are herbivore-induced plant volatiles reliable indicators of herbivore identity to foraging carnivorous arthropods, Entomol. Exp. Appl. 91, 131–142.CrossRefGoogle Scholar
  65. Dicke M., Sabelis M.W. (1989) Does it pay plants to advertise for bodyguards? Towards a cost-benefit analysis of induced synonome production, SPB Academic Publishing, The Hague, The Netherlands.Google Scholar
  66. Dicke M., Sabelis M.W. (1992) Costs and benefts of chemical information conveyance: proximate and ultimate factors, in: Roitberg B.D., Isman M.B. (Eds.), Insect Chemical ecology, An evolutionary approach, Chapman and Hall, New York, USA, pp. 122–155.Google Scholar
  67. Dicke M., Van Loon J.J.A. (2000) Multitrophic effects of herbivoreinduced plant volatiles in an evolutionary context, Entomol. Exp. Appl. 97, 237–249.CrossRefGoogle Scholar
  68. Dicke M., Hilker M. (2003) Induced plant defences: from molecular biology to evolutionary ecology, Basic Appl. Ecol. 4, 3–14.CrossRefGoogle Scholar
  69. Dicke M., Sabelis M.W., Takabayashi J., Bruin J., Posthumus M.A. (1990) Plant strategies of manipulating predator prey interactions through allelochemicals: prospects for application in pest control, J. Chem. Ecol. 16, 3091–3118.CrossRefGoogle Scholar
  70. Dicke M., De Boer J.G., Hofte M., Rocha-Granados M.C. (2003) Mixed blends of herbivore-induced plant volatiles and foraging success of carnivorous arthropods, Oikos 101, 38–48.CrossRefGoogle Scholar
  71. Dicke M., Van Loon J.J.A., De Jong P.W. (2004) Ecology: enhanced: ecogenomics benefits community ecology, Science 305, 618–619.PubMedCrossRefGoogle Scholar
  72. Dixon R.A. (2001) Natural products and plant disease resistance, Nature 411, 843–847.PubMedCrossRefGoogle Scholar
  73. Dong J.Z., Keller W.A., Yan W., Georges F. (2004) Gene expression at early stages of Brassica napus seed development as revealed by transcript profiling of seed-abundant cDNAs, Planta 218, 483–491.PubMedCrossRefGoogle Scholar
  74. Du Toit L.J. (2007) Crop profile for cabbage seed in Washington, Washington State University Extension bulletin, MISC0358E.Google Scholar
  75. Dubuis P.H. (2004) Effect of sulfur deficiency on the resistance of oilseed rape to fungal pathogens and expression profiling of the glutathione S- transferase family of Arabidopsis thaliana, Doctoral Thesis, Institute of Plant Biology, University of Fribourg, Switzerland.Google Scholar
  76. Dubuis P.H., Marazzi C., Stadler E., Mauch F. (2005) Sulphur deficiency causes a reduction in antimicrobial potential and leads to increased disease susceptibility of oilseed rape, J. Phytopathol. 153, 27–36.CrossRefGoogle Scholar
  77. Duran C., Edwards D., Batley J. (2009) Genetic maps and the use of synteny, Methods Mol. Biol. 513, 41–55.PubMedCrossRefGoogle Scholar
  78. Dutta I., Majumder P., Saha P., Ray K., Das S. (2005) Constitutive and phloem specific expression of Allium sativum leaf agglutinin (ASAL) to engineer aphid (Lipaphis erysimi) resistance in transgenic Indian mustard (Brassica juncea), Plant Sci. 169, 996–1007.CrossRefGoogle Scholar
  79. Ekbom B. (1995) Insect pests of Brassica oilseeds, in: Kimber D., McGregor I. (Eds.), Brassica Oilseeds- Production and Utilisation, CAB International, UK.Google Scholar
  80. Ekbom B., Borg A. (1996) Pollen beetle (Meligethes aeneus) oviposition and feeding preference on different host plant species, Entomol. Exp. Appl. 78, 291–299.CrossRefGoogle Scholar
  81. Ekbom B., Ferdinand V. (2003) Field oviposition rates and egg load dynamics of pollen beetles (Meligethes aeneus Fab.) (Colepotera: Nitidulidae), Agr. Forest Entomol. 5, 247–252.CrossRefGoogle Scholar
  82. Ester A., De Putter H., Van Bilsen J.G.P.M. (2003) Filmcoating the seed of cabbage (Brassica oleracea L. convar. Capitata L.) and cauliflower (Brassica oleracea L. var. Botrytis L.) with imidacloprid and spinosad to control insect pests, Crop Prot. 22, 761–768.CrossRefGoogle Scholar
  83. Evans K.A., Allen-Williams L.J. (1992) Electroantennogram responses of the cabbage seed weevil, Ceutorhynchus assimilis to oilseed rape Brassica napus ssp. oleifera, volatiles, J. Chem. Ecol. 18, 1641–1659.CrossRefGoogle Scholar
  84. Evans K.A., Allen-Williams L.J. (1994) Laboratory and field response of the pollen beetle, Meligethes aeneus, to the odour of oilseed rape, Physiol. Entomol. 19, 285–290.CrossRefGoogle Scholar
  85. Evans K.A., Allen-Williams L.J. (1998) Response of cabbage seed weevil (Ceutorhynchus assimilis) to baits of extracted and synthetic hostplant odor, J. Chem. Ecol. 24, 2101–2114.CrossRefGoogle Scholar
  86. Fahey J.W., Zalcmann A.T., Talalay P. (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants, Phytochemistry 56, 5–51.PubMedCrossRefGoogle Scholar
  87. Falk A., Taipalensuu J., Ek B., Lenman M., Rask L. (1995) Characterization of rapeseed myrosinase-binding protein, Planta 195, 387–395.PubMedCrossRefGoogle Scholar
  88. FAOSTAT (2009) Publically available databases from: Food and Agricultural Organization of the United Nations (FAO), http://faostat.fao.org/.Google Scholar
  89. Fatouros N.E., Bukovinszkine’Kiss G., Kalkers L.A., Gamborena R.S., Dicke M., Hilker M. (2005a) Oviposition-induced plant cues: do they arrest Trichogramma wasps during host location, Entomol. Exp. Appl. 115, 207–215.CrossRefGoogle Scholar
  90. Fatouros N.E., Van Loon J.J.A., Hordijk K.A., Smid H.M., Dicke M. (2005b) Herbivore-induced plant volatiles mediate in-flight host discrimination by parasitoids, J. Chem. Ecol. 31, 2033–2047.PubMedCrossRefGoogle Scholar
  91. Ferguson A.W., Williams I.H. (1991) Deposition and longevity of oviposition-deterring pheromone in the cabbage seed weevil, Physiol. Entomol. 16, 27–33.CrossRefGoogle Scholar
  92. Ferguson A.W., Ziesmann J., Blight M.M., Williams I.H., Wadhams L.J., Clark S.J., Woodcock C.M., Mudd A. (1999a) Perception of oviposition-deterring pheromone by cabbage seed weevil (Ceutorhynchus assimilis), J. Chem. Ecol. 25, 1655–1670.CrossRefGoogle Scholar
  93. Ferguson A.W., Solinas M., Ziesmann J., Isidoro N., Williams I.H., Scubla P., Mudd A., Clark S.J., Wadhams L.J. (1999b) Identification of the gland secreting oviposition-deterring pheromone in the cabbage seed weevil, Ceutorhynchus assimilis and the mechanism of pheromone deposition, J. Insect Physiol. 45, 687–699.PubMedCrossRefGoogle Scholar
  94. Fernie A.R., Schauer N. (2008) Metabolomics-assisted breeding: a viable option for crop improvement? Trends Genet. 25, 39–48.PubMedCrossRefGoogle Scholar
  95. Ferry N., Mulligan E.A., Stewart C.N., Tabashnik B.E., Port G.R., Gatehouse A.M. (2006) Prey-mediated effects of transgenic canola on a beneficial, non-target, carabid beetle, Transgenic Res. 15, 501–514.PubMedCrossRefGoogle Scholar
  96. Font R., Del Rio-Celestino M., Fernandez J.M., De Haro A. (2003) Acid detergent fiber analysis in oilseed brassicas by near-infrared spectroscopy, J. Agr. Food Chem. 51, 2917–2922.CrossRefGoogle Scholar
  97. Font R., Del Rio-Celestino M., Rosa E., Aires A., De Hardo-Bailon A. (2005) Glucosinolate assessment in Brassica oleracea leaves by near-infrared spectroscopy, J. Agr. Sci. 143, 65–73.CrossRefGoogle Scholar
  98. Foo H.L., Grønning L.M., Goodenough L., Bones A.M., Danielsen B.E., Whiting D.A., Rossiter J.T. (2000) Purification and characterisation of epithiospecifier protein from Brassica napus: Enzymic intramolecular sulphur addition within alkenyl thiohydroximates derived from alkenyl glucosinolate hydrolysis, FEBS Lett. 486, 243–246.CrossRefGoogle Scholar
  99. Foster S.P., Harris M.O. (1997) Behavioural manipulation methods for insect pest-management, Annu. Rev. Entomol. 42, 123–146.PubMedCrossRefGoogle Scholar
  100. Francis F., Lognay G., Wathelet J.P., Haubruge E. (2001) Effects of allelochemicals from first (Brassicaceae) and second (Myzus persicae and Brevicoryne brassicae) trophic levels on Adalia bipunctata, J. Chem. Ecol. 27, 243–256.PubMedCrossRefGoogle Scholar
  101. Gange A.C., Brown V.K. (1997) Multitrophic interactions in terrestrial systems, Blackwell Science, Oxford, UK.Google Scholar
  102. Gardiner J.B., Morra M.J., Eberlein C.V., Brown P.D., Borek V. (1999) Allelochemicals released in soil following incorporation of rapeseed (Brassica napus) green manures, J. Agr. Food Chem. 47, 3837–3842.CrossRefGoogle Scholar
  103. Gardner S.M., Dissevelt M., Van Lenteren J.C. (2007) Behavioural adaptations in host finding by Trichogramma evanescens: the influence of oviposition experience on response to host contact kairomones, B. Insectol. 60, 23–30.Google Scholar
  104. Geervliet J., Vet L.E.M., Dicke M. (1994) Volatiles from damaged plants as major cues in long-range host-searching by the specialist parasitoid Cotesia rubecula, Entomol. Exp. Appl. 73, 289–297.CrossRefGoogle Scholar
  105. Geervliet J.B.F., Posthumus M.A., Vet L.E.M., Dicke M. (1997) Comparative analysis of headspace volatiles from different caterpillar-infested or uninfested food plants of Pieris species, J. Chem. Ecol. 23, 2935–2954.CrossRefGoogle Scholar
  106. Geervliet J.B.F., Vreugdenhil A.I., Dicke M., Vet L.E.M. (1998) Learning to discriminate between infochemicals from different plant-host complexes by the parasitoids Cotesia glomerata and C. rubecula, Entomol. Exp. Appl. 86, 241–252.CrossRefGoogle Scholar
  107. Girard C., Bonade-Bottino M., Pham-Delegue M.H., Jouanin L. (1998) Two strains of cabbage seed weevil (Coleoptera: Curculionidae) exhibit differential susceptibility to a transgenic oilseed rape expressing oryzacystatin I, J. Insect Physiol. 44, 569–577.PubMedCrossRefGoogle Scholar
  108. Golizadeh A.L.I., Kamali K., Fathipour Y. Abbasipour H. (2007) Temperature-dependent development of diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) on two brassicaceous host plants, Insect Sci. 14, 309–316.CrossRefGoogle Scholar
  109. Gols R., Bukovinszky T., Van Dam N., Dicke M., Bullock J., Harvey J. (2008a) Performance of generalist and specialist herbivores and their endoparasitoids differs on cultivated and wild Brassica Populations, J. Chem. Ecol. 34, 132–143.PubMedCrossRefGoogle Scholar
  110. Gols R., Wagenaar R., Bukovinszky T., Van Dam N.M., Dicke M., Bullock J.M., Harvey J.A. (2008b) Genetic variation in defense chemistry in wild cabbages affects herbivores and their endoparasitoids, Ecology 89, 1616–1626.PubMedCrossRefGoogle Scholar
  111. Gols R., Harvey J. (2009) Plant-mediated effects in the Brassicaceae on the performance and behaviour of parasitoids, Phytochem. Rev. 8, 187–206.CrossRefGoogle Scholar
  112. Gomez-Campo C. (1999) Taxonomy, in: Gomez-Campo C. (Ed.), Development in Plant Genetics and Breeding. Elsevier, Amsterdam, The Netherlands, pp. 3–23.Google Scholar
  113. Görnitz K. (1956) Weitere Untersuchungen über Insekten-Attraktivstoffe aus Cruciferen, Nachrichtenbl. Dtsch. Pflanzenschutzdienst N.F. 10, 137–147.Google Scholar
  114. Graner G., Hamberg M., Meijer J. (2003) Screening of oxylipins for control of oilseed rape (Brassica napus) fungal pathogens, Phytochemistry 63, 89–95.PubMedCrossRefGoogle Scholar
  115. Griffiths D.W., Birch A.N.E., Macfarlane-Smith W.H. (1994) Induced changes in the indole glucosinolate content of oilseed and forage rape (Brassica napus) plants in response to either turnip-root-fly (Delia floralis) larval feeding or artificial root damage, J. Sci. Food Agr. 65, 171–178.CrossRefGoogle Scholar
  116. Gripenberg S., Roslin T. (2007) Up or down in space? Uniting the bottomup versus top-down paradigm and spatial ecology, Oikos 116, 181–188.CrossRefGoogle Scholar
  117. Guerena M. (2006) Cole crops and other Brassicas: Organic production, ATTRA National Sustainable Agriculture Information Service, NCAT, http://attra.ncat.org. Google Scholar
  118. Guignard L. (1890) Sur la localization des principes qui fournissent les essences sulfurées des crucifers, C.R. Acad. Hebd. — Seances III, 249–251.Google Scholar
  119. Gupta P.D., Thorsteinson A.J. (1960) Food plant relationships of the diamond-back moth (Plutella maculipennis) (Curt.), Entomol. Exp. Appl. 3, 305–314.CrossRefGoogle Scholar
  120. Halkier B.A., Gershenzon J. (2006) Biology and biochemistry of glucosinolates, Ann. Rev. Plant Biol. 57, 303–333.CrossRefGoogle Scholar
  121. Hamilton A.J., Endersby N.M., Ridland P.M., Zhang J., Neal M. (2005) Effects of cultivar on oviposition preference, larval feeding and development time of diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), on some Brassica oleracea vegetables in Victoria, Aust. J. Entomol. 44, 284–287.CrossRefGoogle Scholar
  122. Hansen L.M. (2004) Economic damage threshold model for pollen beetles (Meligethes aeneus F.) in spring oilseed rape (Brassica napus L.) crops, Crop Prot. 23, 43–46.CrossRefGoogle Scholar
  123. Harvey J.A., Van Dam N.M., Gols R. (2003) Interactions over four trophic levels: foodplant quality affects development of a hyperparasitoid as mediated through a herbivore and its primary parasitoid, J. Anim. Ecol. 72, 520–531.CrossRefGoogle Scholar
  124. Haukioja E. (1999) Ecology: bite the mother, fight the daughter, Nature 401, 22–23.CrossRefGoogle Scholar
  125. Hawkes C., Coaker T.H. (1979) Factors affecting the behavioural responses of the adult cabbage root fly, Delia brassicae, to host plant odour, Entomol. Exp. Appl. 25, 45–58.CrossRefGoogle Scholar
  126. Heil M. (2008) Indirect defence via tritrophic interactions, New Phytol. 178, 41–61.PubMedCrossRefGoogle Scholar
  127. Heinricher E. (1884) Über Eiweissstoffe führende Idioblasten bei einigen Cruciferen, Ber. Dtsch. Bot. Ges. II, 463–467.Google Scholar
  128. Hern A., Edwards-Jones G., McKinlay R.G. (1996) A review of the preoviposition behaviour of small cabbage white butterfly Pieris rapae (Lepidoptera: Pieridae), Ann. Appl. Biol. 128, 349–371.CrossRefGoogle Scholar
  129. Hilker M., Meiners T. (2002) Induction of plant responses to oviposition and feeding by herbivorous arthropods: a comparison, Entomol. Exp. Appl. 104, 181–192.CrossRefGoogle Scholar
  130. Hilker M., Meiners T. (2006) Early herbivore alert: Insect eggs induce plant defence, J. Chem. Ecol. 32, 1379–1397.PubMedCrossRefGoogle Scholar
  131. Hodek I. (1959) The influence of aphid species as food for the ladybirds Coccinella 7-punctata L. and Adalia bipunctata L., in: The Ontogeny of Insects, Symposium on the Ontogenetic Development of Insects, Prague. Academic Press, London-New York, pp. 314–316.Google Scholar
  132. Hokkanen H.M.T. (1991) Trap cropping in pest management, Annu. Rev. Entomol. 36, 119–138.CrossRefGoogle Scholar
  133. Hokkanen H.M.T., Wearing C.H. (1996) Assessing the risk of pest resistance evolution to Bacillus thuringiensis engineered into crop plants: a case study of oilseed rape, Field Crop. Res. 45, 171–179.CrossRefGoogle Scholar
  134. Hong C.P., Kwon S.J., Kim J.S., Yang T.J., Park B.S., Lim Y.P. (2008) Progress in understanding and sequencing the genome of Brassica rapa, Int. J. Plant Genomics, DOI: 10.1155/2008/582837.Google Scholar
  135. Hopkins A.D. (1917) A discussion of C.G. Hewitt’s paper on “Insect Behaviour”, J. Entomol. 10, 92–93.Google Scholar
  136. Hopkins R.J., Birch A.N.E., Griffiths D.W., Baur R., Städler E., McKinlay R.G. (1997) Leaf surface compounds and oviposition preference of turnip root fly Delia floralis: The role of glucosinolate and nonglucosinolate compounds, J. Chem. Ecol. 23, 629–643.CrossRefGoogle Scholar
  137. Hopkins R.J., Griffiths D.W., Birch A.N.E., McKinlay R.G. (1998) Influence of increasing herbivore pressure on modification of glucosinolate content of swedes (Brassica napus spp. rapifera), J. Chem. Ecol. 24, 2003–2019.CrossRefGoogle Scholar
  138. Hopkins R.J., Wright F., Birch A.N.E., McKinlay R.G. (1999) The decision to reject an oviposition site: sequential analysis of the postalighting behaviour of Delia floralis, Physiol. Entomol. 24, 41–50.CrossRefGoogle Scholar
  139. Hopkins R.J., Van Dam N.M., Van Loon J.J. (2009) Role of glucosinolates in insect-plant relationships and multitrophic interactions, Annu. Rev. Entomol. 54, 57–83.PubMedCrossRefGoogle Scholar
  140. Hossain M.A., Maiti M.K., Basu A., Sen S., Ghosh A.K., Sen S.K. (2006) Transgenic expression of onion leaf lectin gene in Indian Mustard offers protection against aphid colonization, Crop Sci. 46, 2022–2032.CrossRefGoogle Scholar
  141. Höglund A.S., Lenman M., Falk A., Rask L. (1991) Distribution of myrosinase in rapeseed tissues, Plant Physiol. 95, 213–221.PubMedCrossRefGoogle Scholar
  142. Huang X., Renwick J.A.A. (1993) Differential selection of host plants by two Pieris species: the role of oviposition stimulants and deterrents, Entomol. Exp. Appl. 68, 59–69.CrossRefGoogle Scholar
  143. Huang X., Renwick J.A.A. (1994) Relative activities of glucosinolates as oviposition stimulants for Pieris rapae and P. napi oleracea, J. Chem. Ecol. 20, 1025–1037.CrossRefGoogle Scholar
  144. Hudson M.E., Bruggink T., Chang S.H., Yu W., Han B., Wang X., Toorn P.V.D., Zhu T. (2007) Analysis of gene expression during Brassica seed germination using a cross-specific microarray platform, Crop Sci. 47, 96–112.CrossRefGoogle Scholar
  145. Hughes P.R., Renwick J.A.A., Lopez K.D. (1997) New oviposition stimulants for the diamondback moth in cabbage, Entomol. Exp. Appl. 85, 281–283.CrossRefGoogle Scholar
  146. Hurter J., Ramp T., Patrian B., Städler E., Roessingh P., Baur R., De Jong R., Nielsen J.K., Winkler T., Richter W.J., Muller D., Ernst B. (1999) Oviposition stimulants for the cabbage root fly: isolation from cabbage leaves, Phytochemistry 51, 377–382.CrossRefGoogle Scholar
  147. Husebye H., Chadchawan S., Winge P., Thangstad O.P., Bones A.M. (2002) Guard cell- and phloem idioblast-specific expression of thioglucoside glucohydrolase 1 (myrosinase) in Arabidopsis, Plant Physiol. 128, 1180–1188.PubMedCrossRefGoogle Scholar
  148. Husebye H., Arzt S., Burmeister W.P., Hartel F.V., Brandt A., Rossiter J.T., Bones A.M. (2005) Crystal structure at 1.1 Å resolution of an insect myrosinase from Brevicoryne brassicae shows its close relationship to beta-glucosidases, Insect Biochem. Molec. 35, 1311–1320.CrossRefGoogle Scholar
  149. Jin R.G., Liu Y.B., Tabashnik B.E., Borthakur D. (2000) Development of transgenic cabbage (Brassica oleracea var. capitata) for insect resistance by Agrobacterium tumefaciens-mediated transformation, In Vitro Cell. Dev. B. 36, 231–237.CrossRefGoogle Scholar
  150. Johansen N.S. (1997) Mortality of eggs, larvae and pupae and larval dispersal of the cabbage moth, Mamestra brassicae, in white cabbage in South-Eastern Norway, Entomol. Exp. Appl. 83, 347–360.CrossRefGoogle Scholar
  151. Jones A.M.E., Bridges M., Bones A.M., Cole R., Rossiter J.T. (2001) Purification and characterisation of a non-plant myrosinase from the cabbage aphid Brevicoryne brassicae (L.), Insect Biochem. Molec. 31, 1–5.CrossRefGoogle Scholar
  152. Jones A.M.E., Winge P., Bones A.M., Cole R., Rossiter J.T. (2002) Characterization and evolution of a myrosinase from the cabbage aphid Brevicoryne brassicae, Insect Biochem. Molec. 32, 275–284.CrossRefGoogle Scholar
  153. Jones D.A., Takemoto D. (2004) Plant innate immunity — direct and indirect recognition of general and specific pathogen-associated molecules, Curr. Opin. Immunol. 16, 48–62.PubMedCrossRefGoogle Scholar
  154. Jyoti J.L., Shelton A.M., Earle E.D. (2001) Identifying sources and mechanisms of resistance in crucifers for control of cabbage maggot (Diptera: Anthomyiidae), J. Econ. Entomol. 94, 942–949.PubMedCrossRefGoogle Scholar
  155. Jönsson M., Anderson P. (2007) Emission of oilseed rape volatiles after pollen beetle infestation; behavioural and electrophysiological responses in the parasitoid Phradis morionellus, Chemoecology 17, 201–207.CrossRefGoogle Scholar
  156. Jönsson M., Lindkvist A., Anderson P. (2005) Behavioural responses in three ichneumonid pollen beetle parasitoids to volatiles emitted from different phenological stages of oilseed rape, Entomol. Exp. Appl. 115, 363–369.CrossRefGoogle Scholar
  157. Kanrar S., Venkateswari J., Kirti P.B., Chopra, V.L. (2002) Transgenic Indian mustard (Brassica juncea) with resistance to the mustard aphid (Lipaphis erysimi Kalt.), Plant Cell Rep. 20, 976–981.CrossRefGoogle Scholar
  158. Karban R., Baldwin I.T. (1997) Induced resonses to herbivory, Chicago University Press, Chicago, IL, USA.Google Scholar
  159. Karimzadeh J., Wright D.J. (2008) Bottom-up cascading effects in a tritrophic system: interactions between plant quality and hostparasitoid immune responses, Ecol. Entomol. 33, 45–52.Google Scholar
  160. Karowe D.N., Schoonhoven L.M. (1992) Interactions among three trophic levels: the influence of host plant on performance of Pieris brassicae and its parasitoid Cotesia glomerata, Entomol. Exp. Appl. 62, 241–241.CrossRefGoogle Scholar
  161. Kazachkova N.I. (2007) Genotype analysis and studies of pyrethroid resistance of the oilseed rape (Brassica napus) insect pest-pollen beetle (Meligethes aeneus), Doctoral thesis, Faculty of Natural Resources and Agricultural Sciences, Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, Uppsala.Google Scholar
  162. Kazana E., Pope T.W., Tibbles L., Bridges M., Pickett J.A., Bones A.M., Powell G., Rossiter J.T. (2007) The cabbage aphid: a walking mustard oil bomb, Proc. R. Soc. Lond. B 274, 2271–2277.CrossRefGoogle Scholar
  163. Keiichi H. (1995) Chemical basis of differential oviposition by lepidopterous insects, Arch. Insect Biochem. Physiol. 30, 1–23.CrossRefGoogle Scholar
  164. Kelly P.J., Bones A., Rossiter J.T. (1998) Sub-cellular immunolocalization of the glucosinolate sinigrin in seedlings of Brassica juncea, Planta 206, 370–377.PubMedCrossRefGoogle Scholar
  165. Kessler A., Baldwin I.T. (2002) Plant responses to insect herbivory: The emerging molecular analysis, Annu. Rev. Plant Biol. 53, 299–328.PubMedCrossRefGoogle Scholar
  166. Khattab H. (2007) The defense mechanism of cabbage plant against phloem-sucking aphid (Brevicoryne brassicae L.), Aust. J. Basic Appl. Sci. 1, 56–62.Google Scholar
  167. Kift N.B., Ellis P.R., Tatchell G.M., Pink D.A.C. (2000) The influence of genetic background on resistance to the cabbage aphid (Brevicoryne brassicae) in kale (Brassica oleracea var. acephala), Ann. Appl. Biol. 136, 189–195.CrossRefGoogle Scholar
  168. Kim J.H., Jander G. (2007) Myzus persicae (green peach aphid) feeding on Arabidopsis induces the formation of a deterrent indole glucosinolate, Plant J. 49, 1008–1019.PubMedCrossRefGoogle Scholar
  169. Kirkegaard J.A., Sarwar M. (1998) Biofumigation potential of brassicas I. Variation in glucosinolate profiles of diverse fieldgrown brassicas, Plant Soil 201, 71–89.CrossRefGoogle Scholar
  170. Kirk-Spriggs A.H. (1996) Pollen beetles. Coleoptera: Kateretidae and Nitidulidae: Meligethinae, Handbooks for the identification of British insects, Royal Entomological Society, London, UK.Google Scholar
  171. Kishimoto K., Matsui K., Ozawa R., Takabayashi J. (2005) Volatile C6- aldehydes and allo-ocimene activate defense genes and induce resistance against Botrytis cinerea in Arabidopsis thaliana, Plant Cell Physiol. 46, 1093–1102.PubMedCrossRefGoogle Scholar
  172. Kishimoto K., Matsui K., Ozawa R., Takabayashi J. (2005) Volatile C6- aldehydes and allo-ocimene activate defense genes and induce resistance against Botrytis cinerea in Arabidopsis thaliana, Plant Cell Physiol. 46, 1093–1102.PubMedCrossRefGoogle Scholar
  173. Kissen R., Rossiter J.T., Bones A.M. (2009) The “mustard oil bomb”: not so easy to assemble?! Localization, expression and distribution of the components of the myrosinase enzyme system, Phytochem. Rev. 8, 69–86.CrossRefGoogle Scholar
  174. Klijnstra J.W., Roessingh P. (1986) Perception of the oviposition deterring pheromone by tarsal and abdominal contact chemoreceptors in Pieris brassicae, Entomol. Exp. Appl. 40, 71–79.CrossRefGoogle Scholar
  175. Klingen I., Hajek A., Meadow R., Renwick J.A.A. (2002a) Effect of brassicaceous plants on the survival and infectivity of insect pathogenic fungi, BioControl 47, 411–425.CrossRefGoogle Scholar
  176. Klingen I., Meadow R., Aandal T. (2002b) Mortality of Delia floralis, Galleria mellonella and Mamestra brassicae treated with insect pathogenic hyphomycetous fungi, J. Appl. Entomol. 126, 231–237.CrossRefGoogle Scholar
  177. Knodel J.J., Olsen D.L. (2002) Crucifer flea beetle. Biology and integrated pest management in canola, E-1234, NDSU Extension Service, North Dakota State University, USA, http://www.ag.ndsu.edu/pubs/plantsci/pests/e1234.pdf.Google Scholar
  178. Knodel J., Ganehiarachchi M. (2008) Bertha armyworm in canola. Biology and integrated pest management in canola, E-1347, NDSU Extension Service, North Dakota State University, USA, http://www.ag.ndsu.edu/pubs/plantsci/pests/e1347.pdf.Google Scholar
  179. Koritsas V.M., Lewis J.A., Fenwick G.R. (1991) Glucosinolate responses of oilseed rape, mustard and kale to mechanical wounding and infestation by cabbage stem flea beetle (Psylliodes chrysocephala), Ann. Appl. Biol., 118, 209–221.CrossRefGoogle Scholar
  180. Koroleva O.A., Davies A., Deeken R., Thorpe M.R., Tomos A.D., Hedrich R. (2000) Identification of a new glucosinolate-rich cell type in Arabidopsis flower stalk, Plant Physiol. 124, 599–608.PubMedCrossRefGoogle Scholar
  181. Ku’snierczyk A., Winge P., Midelfart H., Armbruster W.S., Rossiter J.T., Bones A.M. (2007) Transcriptional responses of Arabidopsis thaliana ecotypes with different glucosinolate profiles after attack by polyphagous Myzus persicae and oligophagous Brevicoryne brassicae, J. Exp. Bot. 58, 2537–2552.CrossRefGoogle Scholar
  182. Kuśnierczyk A., Winge P., Jørstad T.S., Troczyńska J., Rossiter J.T., Bones A.M. (2008) Towards global understanding of plant defence against aphids -timing and dynamics of early Arabidopsis defence responses to cabbage aphid (Brevicoryne brassicae) attack, Plant Cell Environ. 31, 1097–1115.PubMedCrossRefGoogle Scholar
  183. Labana K.S., Gupta M.L. (1993) Importance and Origin, in: Labana K.S., Banga S.S., Banga S.K. (Eds.), Breeding Oilseed Brassicas, Springer-Verlag, Berlin, Germany, pp. 1–7Google Scholar
  184. Lamb R.J. (1989) Entomology of oilseed Brassica crops, Annu. Rev. Entomol. 34, 211–229.CrossRefGoogle Scholar
  185. Landolt P. (1993) Effects of host plant leaf damage on cabbage looper moth attraction and oviposition, Entomol. Exp. Appl. 67, 79–85.CrossRefGoogle Scholar
  186. Larkin R.P., Griffin T.S. (2007) Control of soilborne potato diseases using Brassica green manures, Crop Prot. 26, 1067–1077.CrossRefGoogle Scholar
  187. Lauro N., Kuhlmann U., Mason P.G., Holliday N.J. (2005) Interaction of a solitary larval endoparasitoid Microplitis mediator with its host Mamestra brassicae: host acceptance and host suitability, J. Appl. Entomol. 129, 567–573.CrossRefGoogle Scholar
  188. Law J.H., Regnier F.E. (1971) Pheromones, Annu. Rev. Biochem. 40, 533–548.PubMedCrossRefGoogle Scholar
  189. LeCoz C., Ducombs G. (2006) Plants and plant products, in: Frosch P.J., Menne T., Lepottevin J.P. (Eds.), Contact Dermatitis, 4th ed., Springer Verlag, Berlin-Heidelberg, Germany, pp. 751–800.CrossRefGoogle Scholar
  190. Leckband G., Frauen M., Friedt W. (2002) NAPUS 2000. Rapeseed (Brassica napus) breeding for improved human nutrition, Food Res. Int. 35, 273–278.CrossRefGoogle Scholar
  191. Lehrman A. (2007) Oilseed rape transformed with a pea lectin gene: Target and non-target insects, plant competition, and farmer attitudes. Doctoral Thesis, Faculty of Natural Resources and Agricultural Sciences Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden.Google Scholar
  192. Lenman M., Falk A., Rodin J., Höglund A.S., Ek B., Rask L. (1993) Differential expression of myrosinase gene families, Plant Physiol. 103, 703–711.PubMedCrossRefGoogle Scholar
  193. Lewis W.J., Van Lenteren J.C., Phatak S.C., Tumlinson J.H. (1997) A total system approach to sustainable pest management, Proc. Natl Acad. Sci. (USA) 94, 12243–12248.CrossRefGoogle Scholar
  194. Li Q., Eigenbrode S.D., Stringam G.R., Thiagarajah M.R. (2000) Feeding and growth of Plutella xylostella and Spodoptera eridania on Brassica juncea with varying glucosinolate concentrations and myrosinase activities, J. Chem. Ecol. 26, 2401–2419.CrossRefGoogle Scholar
  195. Liu C.W., Lin C.C., Yiu J.C., Chen J.J.W., Tseng M.J. (2008) Expression of a Bacillus thuringiensis toxin (cry1Ab) gene in cabbage (Brassica oleracea L. var. capitata L.) chloroplasts confers high insecticidal efficacy against Plutella xylostella, Theor. Appl. Genet. 117, 75–88.PubMedCrossRefGoogle Scholar
  196. Lou P., Zhao J., He H., Hanhart C., Del Carpio D.P., Verkerk R., Custers J., Koornneef M., Bonnema G. (2008) Quantitative trait loci for glucosinolate accumulation in Brassica rapa leaves, New Phytol. 179, 1017–1032.PubMedCrossRefGoogle Scholar
  197. Ma W.C., Schoonhoven L.M. (1973) Tarsal contact chemosensory hairs of the large butterfly Pieris brassicae and their possible role in oviposition behaviour, Entomol. Exp. Appl. 16, 343–357.CrossRefGoogle Scholar
  198. MacLeod A.J., Rossiter J.T. (1985) The occurrence and activity of epithiospecifier protein in some cruciferae seeds, Phytochemistry 24, 1895–1898.CrossRefGoogle Scholar
  199. Mandal S.M.A., Mishra R.K., Patra A.K. (1994) Yield loss in rapeseed and mustard due to aphid infestation in respect of different cultivars and dates of sowing, Orissa J. Agric. Res. 7, 58–62.Google Scholar
  200. Marazzi C., Patrian B., Städler E. (2004a) Secondary metabolites of the leaf surface affected by sulphur fertilisation and perceived by the diamondback moth, Chemoecology 14, 81–86.CrossRefGoogle Scholar
  201. Marazzi C., Patrian B., Städler E. (2004b) Secondary metabolites of the leaf surface affected by sulphur fertilisation and perceived by the cabbage root fly, Chemoecology 14, 87–94.CrossRefGoogle Scholar
  202. Matthiessen J.N., Shackleton M.A. (2005) Biofumigation: environmental impacts on the biological activity of diverse pure and plant-derived isothiocyanates, Pest Manag. Sci. 61, 1043–1051.PubMedCrossRefGoogle Scholar
  203. Mattiacci L., Dicke M., Posthumus M.A. (1994) Induction of parasitoid attracting synomone in brussels sprouts plants by feeding of Pieris brassicae larvae: Role of mechanical damage and herbivore elicitor, J. Chem. Ecol. 20, 2229–2247.CrossRefGoogle Scholar
  204. Mattiacci L., Rudelli S., Rocca B.A., Genini S., Dorn S. (2001) Systemically-induced response of cabbage plants against a specialist herbivore, Pieris brassicae, Chemoecology 11, 167–173.CrossRefGoogle Scholar
  205. MBTOC (1997) Report of the Methyl Bromide Technical Options Committee, Nairobi, Kenya, United Nations Environmental Programme UNEP, 221 p.Google Scholar
  206. Mello M.O., Silva-Filho M.C. (2002) Plant-insect interactions: an evolutionary arms race between two distinct defense mechanisms, Braz. J. Plant Physiol. 14, 71–81.CrossRefGoogle Scholar
  207. Mewis I., Tokuhisa J.G., Schultz J.C., Appel H.M., Ulrichs C., Gershenzon J. (2006) Gene expression and glucosinolate accumulation in Arabidopsis thaliana in response to generalist and specialist herbivores of different feeding guilds and the role of defense signaling pathways, Phytochemistry 67, 2450–2462.PubMedCrossRefGoogle Scholar
  208. Mithen R. (1992) Leaf glucosinolate profiles and their relationship to pest and disease resistance in oilseed rape, Euphytica 63, 71–83.CrossRefGoogle Scholar
  209. Monfort W.S., Csinos A.S., Desaeger J., Seebold K., Webster T.M., Diaz- Perez J.C. (2007) Evaluating Brassica species as an alternative control measure of root-knot nematode (M. incognita) in Georgia vegetable plasticulture, Crop Prot. 26, 1359–1368.CrossRefGoogle Scholar
  210. Montesano M., Brader G., Palva E.T. (2003) Pathogen derived elicitors: searching for receptors in plants, Mol. Plant Pathol. 4, 73–79.PubMedCrossRefGoogle Scholar
  211. Mossler M.A. (2005) Florida Crop/Pest Management Profile: Specialty Brassicas (Arrugula, Bok Choy, Chinese Broccoli, Chinese Mustard, Napa) PI-70, Pesticide Information Office, University of Florida, USA.Google Scholar
  212. Mudd A., Ferguson A.W., Blight M.M., Williams I.H., Scubla P., Solinas M., Clark S.J. (1997) Extraction, isolation, and composition of oviposition-deterring secretion of cabbage seed weevil Ceutorhynchus assimilis, J. Chem. Ecol. 23, 2227–2240.CrossRefGoogle Scholar
  213. Mulligan E.A., Ferry N., Jouanin L., Walters K.F., Port G.R., Gatehouse A.M. (2006) Comparing the impact of conventional pesticide and use of a transgenic pest-resistant crop on the beneficial carabid beetle Pterostichus melanarius, Pest Manag. Sci. 62, 999–1012.PubMedCrossRefGoogle Scholar
  214. Mumm R., Posthumus M.A., Dicke M. (2008) Significance of terpenoids in induced indirect plant defence against herbivorous arthropods, Plant Cell Environ. 31, 575–585.PubMedCrossRefGoogle Scholar
  215. Murchie A.K. Hume K.D. (2003) Evidence for monogeny in the brassica pod midge Dasineura brassicae, Entomol. Exp. Appl. 107, 237–241.CrossRefGoogle Scholar
  216. Murchie A.K., Smart L.E., Williams I.H. (1997) Responses of Dasineura brassicae and its parasitoids Platygaster subuliformis and Omphale clypealis to field traps baited with organic isothiocyanates, J. Chem. Ecol. 23, 917–926.CrossRefGoogle Scholar
  217. Müller C., Arand K. (2007) Trade-offs in oviposition choice? Fooddependent performance and defence against predators of a herbivorous sawfly, Entomol. Exp. Appl. 124, 153–159.CrossRefGoogle Scholar
  218. Müller C., Brakefield P.M. (2003) Analysis of a chemical defense in sawfly larvae: easy bleeding targets predatory wasps in late summer, J. Chem. Ecol. 29, 2683–2694.PubMedCrossRefGoogle Scholar
  219. Müller C., Sieling N. (2006) Effects of glucosinolate and myrosinase levels in Brassica juncea on a glucosinolate-sequestering herbivore — and vice versa, Chemoecology 16, 191–201.CrossRefGoogle Scholar
  220. Neveu N., Grandgirard J., Nenon J.P., Cortesero A.M. (2002) Systemic release of herbivore-induced plant volatiles by turnips infested by concealed root-feeding larvae Delia radicum L., J. Chem. Ecol. 28, 1717–1732.PubMedCrossRefGoogle Scholar
  221. Nicolas S.D., Leflon M., Monod H., Eber F., Coriton O., Huteau V., Chèvre A.M., Jenczewski E. (2009) Genetic regulation of meiotic cross-overs between related genomes in Brassica napus haploids and hybrids, Plant Cell 21, 373–385.PubMedCrossRefGoogle Scholar
  222. Noble R.R.P., Harvey S.G., Sams C.E. (2002) Toxicity of Indian mustard and allyl isothiocyanate to masked chafer beetle larvae, Plant Health Progress, DOI: 10.1094/PHP-2002-0610-01-RS.Google Scholar
  223. Noldus L.P.J.J., Van Lenteren J.C. (1985a) Kairomones for egg parasite Trichogramma evanescens, Westwood I. Effect of volatiles released by two of its hosts, Pieris brassicae L. and Mamestra brassicae L., J. Chem. Ecol. 11, 781–791.CrossRefGoogle Scholar
  224. Noldus L.P.J.J., Van Lenteren J.C. (1985b) Kairomones for egg parasite Trichogramma evanescens, Westwood II. Effect of contact chemicals produced by two of its hosts, Pieris brassicae L. and Pieris rapae L., J. Chem. Ecol. 11, 793–798.CrossRefGoogle Scholar
  225. Nottingham S.F., Coaker T.H. (1985) The olfactory response of cabbage root fly Delia radicum to the host plant volatile allylisothiocyanate, Entomol. Exp. Appl. 39, 307–316.CrossRefGoogle Scholar
  226. Nürnberger T., Brunner F. (2002) Innate immunity in plants and animals: emerging parallels between the recognition of general elicitors and pathogen-associated molecular patterns, Curr. Opin. Plant Biol. 5, 318–324.PubMedCrossRefGoogle Scholar
  227. Ode P.J. (2006) Plant chemistry and natural enemy fitness: Effects on herbivore and natural enemy interactions, Ann. Rev. Entomol. 51, 163–185.CrossRefGoogle Scholar
  228. >Omura H., Honda K., Hayashi N. (1999) Chemical and chromatic bases for preferential visiting by the cabbage butterfly Pieris rapae to rape flowers, J. Chem. Ecol. 25, 1895–1906.CrossRefGoogle Scholar
  229. Paré P.W., Tumlinson J.H. (1999) Plant volatiles as a defense against insect herbivores, Plant Physiol. 121, 325–332.PubMedCrossRefGoogle Scholar
  230. Pedras M.S.C., Okanga F.I., Zaharia I.L., Khan A.Q. (2000) Phytoalexins from crucifers: synthesis, biosynthesis, and biotransformation, Phytochemistry 53, 161–176.PubMedCrossRefGoogle Scholar
  231. Pedras M.S.C., Zheng Q.A., Gadagi R.S. (2007a) The first naturally occurring aromatic isothiocyanates, rapalexins A and B, are cruciferous phytoalexins, Chem. Commun. 4, 368–370.CrossRefGoogle Scholar
  232. Pedras M.S.C., Gadagi R.S., Jha M., Sarma-Mamillapalle V.K. (2007b) Detoxification of the phytoalexin brassinin by isolates of Leptosphaeria maculans pathogenic on brown mustard involves an inducible hydrolase, Phytochemistry 68, 1572–1578.PubMedCrossRefGoogle Scholar
  233. Pickett J.A., Wadhams L.J., Woodcock C.M. (1997) Developing sustainable pest control from chemical ecology, Agr. Ecosyst. Environ. 64, 149–156.CrossRefGoogle Scholar
  234. Pickett J.A., Rasmussen H.B., Woodcock C.M., Matthes M., Napier J.A. (2003) Plant stress signalling: understanding and exploiting plantplant interactions, Biochem. Soc. T. 31, 123–127.CrossRefGoogle Scholar
  235. Picoaga A., Cartea M.E., Soengas P., Monetti L., Ordás A. (2003) Resistance of kale populations to lepidopterous pests in northwestern Spain, J. Econ. Entomol. 96, 143–147.PubMedCrossRefGoogle Scholar
  236. Pivnick K.A., Lamb R.J., Reed D. (1992) Response of flea beetles, Phyllotreta spp., to mustard oils and nitriles in field trapping experiments, J. Chem. Ecol. 18, 863–873.CrossRefGoogle Scholar
  237. Pivnick K.A., Jarvis B.J., Slater G.P. (1994) Identification of olfactory cues used in host-plant finding by diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae), J. Chem. Ecol. 20, 1407–1427.CrossRefGoogle Scholar
  238. Ploeg A. (2008) Biofumigation to manage plant-parasitic nematodes, in: Ciancio A., Mukerji K.G. (Eds.), Integrated Management of Plant Pests and Diseases, Vol. 2 — Integrated Management and Biocontrol of Vegetable and Grain Crops Nematodes, Springer, The Netherlands, pp. 239–248.Google Scholar
  239. Pontoppidan B., Hopkins R., Rask L. (2003) Infestation by cabbage aphid (Brevicoryne brassicae) on oilseed rape (Brassica napus) causes a long lasting induction of the myrosinase system, Entomol. Exp. Appl. 109, 55–62.CrossRefGoogle Scholar
  240. Pope T.W., Kissen R., Grant M., Pickett J.A., Rossiter J.T., Powell G. (2008) Comparative innate responses of the aphid parasitoid Diaeretiella rapae to alkenyl glucosinolate derived isothiocyanates, nitriles and epithionitriles, J. Chem. Ecol. 34, 1302–1310.PubMedCrossRefGoogle Scholar
  241. Popova T. (1993) A study of antibiotic effects on cabbage cultivars on the cabbage moth Mamestra brassicae L. (Lepidoptera: Noctuidae), Entomol. Rev. 72, 125–132.Google Scholar
  242. Potter M.J., Davies K., Rathjen A.J. (1998) Suppressive impact of glucosinolates in Brassica vegetative tissues on root lesion nematode Pratylenchus neglectus, J. Chem. Ecol. 24, 67–80.CrossRefGoogle Scholar
  243. Pratt C., Pope T., Powell G., Rossiter J. (2008) Accumulation of glucosinolates by the cabbage aphid Brevicoryne brassicae as a defense against two coccinellid species, J. Chem. Ecol. 34, 323–329.PubMedCrossRefGoogle Scholar
  244. Pyke B., Rice M., Sabine B., Zalucki M.P. (1987) The push-pull strategy - behavioural control of Heliothis, Aust. Cotton Grow, May–July, 7–9.Google Scholar
  245. Quaglia F., Rossi E., Petacchi R., Taylor C.E. (1993) Observations on an infestation by green peach aphids (Homoptera: Aphididae) on greenhouse tomatoes in Italy, J. Econ. Entomol. 86, 1019–1025.Google Scholar
  246. Rana J. (2005) Performance of Lipaphis erysimi (Homoptera: Aphididae) on different Brassica species in a tropical environment, J. Pestic. Sci. 78, 155–160.CrossRefGoogle Scholar
  247. Rangkadilok N., Nicolas M.E., Bennett R.N., Premier R.R., Eagling D.R., Taylor P.W.J. (2002) Developmental changes of sinigrin and glucoraphanin in three Brassica species (Brassica nigra, Brassica juncea and Brassica oleracea var. italica), Sci. Hortic. 96, 11–26.CrossRefGoogle Scholar
  248. Rask L., Andreasson E., Ekbom B., Eriksson S., Pontoppidan B., Meijer J. (2000) Myrosinase: gene family evolution and herbivore defence in Brassicaceae, Plant Mol. Biol. 42, 93–113.PubMedCrossRefGoogle Scholar
  249. Rausch T., Wachter A. (2005) Sulfur metabolism: a versatile platform for launching defence operations, Trends Plant Sci. 10, 503–509.PubMedCrossRefGoogle Scholar
  250. Raymer P.L. (2002) Canola: An emerging oilseed crop, in: Janwick J., Whipkey A. (Eds.), Trends in new crops and new uses, ASHS Press, Alexandria, VA, USA.Google Scholar
  251. Reddy G.V.P., Holopainen J.K., Guerrero A. (2002) Olfactory responses of Plutella xylostella natural enemies to host pheromone, larval fraa, and green leaf cabbage volatiles, J. Chem. Ecol. 28, 131–143.PubMedCrossRefGoogle Scholar
  252. Reddy G.V.P., Tossavainen P., Nerg A.M., Holopainen J.K. (2004) Elevated atmospheric CO2 affects the chemical quality of Brassica plants and the growth rate of the specialist Plutella xylostella, but not the generalist Spodoptera littoralis, J. Agr. Food Chem. 52, 4185–4191.CrossRefGoogle Scholar
  253. Renwick J., Haribal M., Gouinguené S., Städler E. (2006) Isothiocyanates stimulating oviposition by the diamondback moth, Plutella xylostella, J. Chem. Ecol. 32, 755–766.PubMedCrossRefGoogle Scholar
  254. Renwick J.A.A. (2001) Variable diets and changing taste in plant-insect relationships, J. Chem. Ecol. 27, 1063–1076.PubMedCrossRefGoogle Scholar
  255. Renwick J.A.A., Lopez K. (1999) Experience-based food consumption by larvae of Pieris rapae: addiction to glucosinolates, Entomol. Exp. Appl. 91, 51–58.CrossRefGoogle Scholar
  256. Renwick J.A.A., Radke C.D. (1980) An oviposition deterrent associated with frass from feeding larvae of the cabbage looper, Trichoplusia ni (Lepidoptera: Noctuidae), Environ. Entomol. 9, 318–320.Google Scholar
  257. Renwick J.A.A., Radke C.D. (1981) Host plant constituents as oviposition deterrents for the cabbage looper, Entomol. Exp. Appl. 30, 201–204.CrossRefGoogle Scholar
  258. Renwick J.A.A., Radke C.D. (1985) Constituents of host- and non-host plants deterring oviposition by the cabbage butterfly, Pieris rapae, Entomol. Exp. Appl. 39, 21–26.CrossRefGoogle Scholar
  259. Renwick J.A.A., Radke C.D., Sachdev-Gupta K., Städler E. (1992) Leaf surface chemicals stimulating oviposition by Pieris rapae (Lepidoptera: Pieridae) on cabbage, Chemoecology 3, 33–38.CrossRefGoogle Scholar
  260. Riaño-Pachón D.M., Nagel A., Neigenfind J., Wagner R., Basekow R., Weber E., Mueller-Roeber B., Diehl S., Kersten B. (2009) GabiPD: The GABI primary database — a plant integrative ’omics’ database, Nucleic Acids Res. 37, D954–959.PubMedCrossRefGoogle Scholar
  261. Rodman J.E., Chew F.S. (1980) Phytochemical correlates of herbivory in a community of native and naturalized cruciferae, Biochem. Syst. Ecol. 8, 43–50.CrossRefGoogle Scholar
  262. Rodriguez V.M., Cartea M.E., Padilla G., Velasco P., Ordas A. (2005) The nabicol: A horticultural crop in northwestern Spain, Euphytica 142, 237–246.CrossRefGoogle Scholar
  263. Roessingh P., Städler E. (1990) Foliar form, colour and surface characteristics influence oviposition behaviour in the cabbage root fly Delia radicum, Entomol. Exp. Appl. 57, 93–100.CrossRefGoogle Scholar
  264. Roessingh P., Städler E., Fenwick G., Lewis J., Nielsen J., Hurter J., Ramp T. (1992) Oviposition and tarsal chemoreceptors of the cabbage root fly are stimulated by glucosinolates and host plant extracts, Entomol. Exp. Appl. 65, 267–282.CrossRefGoogle Scholar
  265. Roessingh P., Städler E., Baur R., Hurter J., Ramp T. (1997) Tarsal chemoreceptors and oviposition behaviour of the cabbage root fly (Delia radicum) sensitive to fractions and new compounds of hostleaf surface extracts, Physiol. Entomol. 22, 140–148.CrossRefGoogle Scholar
  266. Rohloff J., Bones A.M. (2005) Volatile profiling of Arabidopsis thaliana — Putative olfactory compounds in plant communication, Phytochemistry 66, 1941–1955.PubMedCrossRefGoogle Scholar
  267. Rojas J.C., Wyatt T.D. (1999) The role of pre- and post-imaginal experience in the host-finding and oviposition behaviour of the cabbage moth, Physiol. Entomol. 24, 83–89.CrossRefGoogle Scholar
  268. Rojas J.C., Tristram D., Wyatt T.D., Birch M.C. (2000) Flight and oviposition behavior toward different host plant species by the cabbage moth, Mamestra brassicae (L.) (Lepidoptera: Noctuidae), J. Insect Behav. 13, 247–254.CrossRefGoogle Scholar
  269. Rojas J.C., Wyatt T.D., Birch M.C. (2001) Oviposition by Mamestra brassicae (L.) (Lep., Noctuidae) in relation to age, time of day and host plant, J. Appl. Entomol. 125, 161–163.CrossRefGoogle Scholar
  270. Ross-Craig S. (1949) Drawings of British plants: Part III. Cruciferae, G. Bells and Sons Ltd, London, UK.Google Scholar
  271. Rossiter J.T., Jones A.M., Bones A.M. (2003) A novel myrosinaseglucosinolate defense system in cruciferous specialist aphids, Recent Adv. Phytochem. 37, 127–142.CrossRefGoogle Scholar
  272. Rouxel T., Kollmann A., Boulidard L., Mithen R. (1991) Abiotic elicitation of indole phytoalexins and resistance to Leptosphaeria maculans within Brassiceae, Planta 184, 271–278.CrossRefGoogle Scholar
  273. Ruther J., Thiemann K. (1997) Response of the pollen beetle Meligethes aeneus to volatiles emitted by intact plants and conspecifics, Entomol. Exp. Appl. 84, 183–188.ai]Ryan M.F. (2002) Plant chemicals in pest control, in: Ryan M.F. (Ed.), Insect Chemoreception: Fundamental and Applied, Springer, The Netherlands, pp. 193–222.CrossRefGoogle Scholar
  274. Salem S.A., Abou-Ela R.G., Matter M.M., El-Kholy M.Y. (2007) Entomocidal effect of Brassica napus extracts on two store pests, Sitophilus oryzae (L.) and Rhizopertha dominica (Fab.) (Coleoptera), J. Appl. Sci. Res. 3, 317–322.Google Scholar
  275. Sanders D. (2005) Growers Guidelines. American Vegetable Grower, October 2005 University of California SAREP Online Cover Crop Database: Mustards, http://www.sarep.ucdavis.edu.Google Scholar
  276. Sang J.P., Minchinton I.R., Johnstone P.K., Truscott R.J.W. (1984) Glucosinolate profiles in the seed, root and leaf tissue of cabbage, mustard, rapeseed, radish and swede, Can. J. Plant Sci. 64, 77–93.CrossRefGoogle Scholar
  277. Sarfraz M., Dosdall L.M., Keddie B.A. (2006) Diamondback moth-host plant interactions: Implications for pest management, Crop Prot. 25, 625–639.CrossRefGoogle Scholar
  278. Sarfraz M., Dosdall L.M., Keddie B.A. (2007) Resistance of some cultivated Brassicaceae to infestations by Plutella xylostella (Lepidoptera: Plutellidae), J. Econ. Entomol. 100, 215–224.PubMedCrossRefGoogle Scholar
  279. Sarwar M., Kirkegaard J.A., Wong P.T.W., Desmarchelier J.M. (1998) Biofumigation potential of brassicas, III. In vitro toxicity of isothiocyanates to soil-borne fungal pathogens, Plant Soil 201, 103–112.CrossRefGoogle Scholar
  280. Sato Y., Ohsaki N. (2004) Response of the wasp (Cotesia glomerata) to larvae of the large white butterfly (Pieris brassicae), Ecol. Res. 19, 445–449.CrossRefGoogle Scholar
  281. Schoonhoven L.M. (1990) Host-marking pheromones in Lepidoptera, with special reference to two Pieris spp., J. Chem. Ecol. 16, 3043–3052.CrossRefGoogle Scholar
  282. Schroeder N.C., Dumbleton A.J. (2001) Thiamethoxam seed coating on rape seed for the control of cabbage aphid Brevicoryne brassicae (L.), N. Z. Plant Protect. 54, 240–243.Google Scholar
  283. Schuler T.H., Denholm I., Jouanin L., Clark S.J., Clark A.J., Poppy G.M. (2001) Population-scale laboratory studies of the effect of transgenic plants on nontarget insects, Mol. Ecol. 10, 1845–1853.PubMedCrossRefGoogle Scholar
  284. Schuler T.H., Denholm I., Clark S.J., Stewart C.N., Poppy G.M. (2004) Effects of Bt plants on the development and survival of the parasitoid Cotesia plutellae (Hymenoptera: Braconidae) in susceptible and Bt-resistant larvae of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae), J. Insect Physiol. 50, 435–443.PubMedCrossRefGoogle Scholar
  285. Sekhon B.S. (1999) Population dynamics of Lipaphis erysimi and Myzus persicae on different species of Brassica, 10th International Rapeseed Congress, Canberra, Australia.Google Scholar
  286. Sekhon B.S., Åhman I. (1993) Insect resistance with special reference to mustard aphid, in: Labana K.S., Banga S.S., Banga S.K. (Eds.), Breeding Oilseed Brassicas, Springer-Verlag, Berlin, Germany, pp. 206–217.Google Scholar
  287. Shelton A.M., Badenes-Perez F.R. (2006) Concepts and applications of trap cropping in pest management, Annu. Rev. Entomol. 51, 285–308.PubMedCrossRefGoogle Scholar
  288. Shelton A.M., Hatch S.L., Zhao J.Z., Chen M., Earle E.D., Cao J. (2008) Suppression of diamondback moth using Bt-transgenic plants as a trap crop, Crop Prot. 27, 403–409.CrossRefGoogle Scholar
  289. Shiojiri K., Takabayashi J., Yano S., Takafuji A. (2000) Herbivorespecies- specific interactions between crucifer plants and parasitic wasps (Hymenoptera: Braconidae) that are mediated by infochemicals present in areas damaged by herbivores, Appl. Entomol. Zool. 35, 519–524.CrossRefGoogle Scholar
  290. Shiojiri K., Takabayashi J., Yano S., Takafuji A. (2002) Oviposition preferences of herbivores are affected by tritrophic interaction webs, Ecol. Lett. 5, 186–192.CrossRefGoogle Scholar
  291. Sibanda T., Dobson H.M., Cooper J.F., Manyangarirwa W., Chiimba W. (2000) Pest management challenges for smallholder vegetable farmers in Zimbabwe, Crop Prot. 19, 807–815.CrossRefGoogle Scholar
  292. Silverstein K.A.T., Graham M.A., Paape T.D., VandenBosch K.A. (2005) Genome organization of more than 300 defensin-like genes in Arabidopsis, Plant Physiol. 138, 600–610.PubMedCrossRefGoogle Scholar
  293. Silverstein K.A.T., Moskal Jr.W.W., Wu H.C., Underwood B.A., Graham M.A., Town C.D., VandenBosch K.A. (2007) Small cysteinerich peptides resembling antimicrobial peptides have been underpredicted in plants, Plant J. 51, 262–280.PubMedCrossRefGoogle Scholar
  294. Simmonds M., Blaney W., Mithen R., Birch A., Lewis J. (1994) Behavioural and chemosensory responses of the turnip root fly (Delia floralis) to glucosinolates, Entomol. Exp. Appl. 71, 41–57.CrossRefGoogle Scholar
  295. Smallegange R., Van Loon J., Blatt S., Harvey J., Agerbirk N., Dicke M. (2007) Flower vs. leaf feeding by Pieris brassicae: Glucosinolaterich flower tissues are preferred and sustain higher growth rate, J. Chem. Ecol. 33, 1831–1844.PubMedCrossRefGoogle Scholar
  296. Smart L.E., Blight M.M. (1997) Field discrimination of oilseed Rape, Brassica napus volatiles by cabbage seed weevil, Ceutorhynchus assimilis, J. Chem. Ecol. 23, 2555–2567.CrossRefGoogle Scholar
  297. Smart L.E., Blight M.M. (2000) Response of the pollen beetle, Meligethes aeneus, to traps baited with volatiles from oilseed rape, Brassica napus, J. Chem. Ecol. 26, 1051–1064.CrossRefGoogle Scholar
  298. Smart L.E., Blight M.M., Hick A.J. (1997) Effect of visual cues and a mixture of isothiocyanates on trap capture of cabbage seed weevil, Ceutorhynchus assimilis, J. Chem. Ecol. 23, 889–902.CrossRefGoogle Scholar
  299. Smith B.J., Kirkegaard J.A. (2002) In vitro inhibition of soil microorganisms by 2-phenylethyl isothiocyanate, Plant Pathol. 51, 585–593.CrossRefGoogle Scholar
  300. Smith B.J., Kirkegaard J.A., Howe G.N. (2004) Impacts of Brassica break-crops on soil biology and yield of following wheat crops, Aust. J. Agr. Res. 55, 1–11.CrossRefGoogle Scholar
  301. Smith M.L. (2002) Research in Scottland — The Scottish Agricultural College (SAC): An overview, Pesticide Outlook, 59–60.ai]Smith M.C. (2005) Plant Resistance to Arthropods — Molecular and conventional approaches, Chap. 2: Antixenosis — Adverse effects of resistance on arthropod behavior, Springer, Dordrecht, The Netherlands, pp. 19–63.Google Scholar
  302. Snapp S., Cichy K., O’Neil K. (2006) Mustards — A Brassica cover crop for Michigan, Extension Bulletin E-2956, Michigan State University Extension, USA.Google Scholar
  303. Snowdon R.J. (2007) Cytogenetics and genome analysis in Brassica crops, Chromosome Res. 15, 85–95.PubMedCrossRefGoogle Scholar
  304. Snowdon R.J., Friedt W. (2004) Molecular markers in Brassica oilseed breeding: current status and future possibilities, Plant Breeding 123, 1–8.CrossRefGoogle Scholar
  305. Snowdon R.J., Luhs W., Friedt W. (2007) Oilseed rape, in: Kole C. (Ed.), Genome Mapping and Molecular Breeding in Plants, Vol. 2 Oilseeds, Springer-Verlag Berlin Heidelberg, Germany, pp. 55–114.Google Scholar
  306. Souckova H. (2006) Rape methyl-ester as a renewable energy resource in transport, Agr. Econ.-Czech. 52, 244–249.Google Scholar
  307. Steinberg S., Dicke M., Vet L.E.M. (1993) Relative importance of infochemicals from first and second trophic level in long-range host location by the larval parasitoid Cotesia glomerata, J. Chem. Ecol. 19, 47–59.CrossRefGoogle Scholar
  308. Suwabe K., Tsukazaki H., Iketani H. Hatakeyama K., Kondo M., Fujimura M., Nunome T., Fukuoka H., Hirai M., Matsumoto S. (2006) Simple sequence repeat-based comparative genomics between Brassica rapa and Arabidopsis thaliana: The genetic origin of clubroot resistance, Genetics 173, 309–319.PubMedCrossRefGoogle Scholar
  309. Svanem P., Bones A.M., Rossiter J.T. (1997) Metabolism of [α-14C]-desulphophenethylglucosinolate in Nasturtium officinale, Phytochemistry 44, 1251–1255.CrossRefGoogle Scholar
  310. Tabashnik B.E. (1987) Plant secondary compounds as oviposition deterrents for cabbage butterfly, Pieris rapae (Lepidoptera: Pieridae), J. Chem. Ecol. 13, 309–316.CrossRefGoogle Scholar
  311. Takabayashi J., Dicke M. (1996) Plant-carnivore mutualism through herbivore-induced carnivore attractants, Trends Plant Sci. 1, 109–113.CrossRefGoogle Scholar
  312. Talekar N.S., Shelton A.M. (1993) Biology, ecology, and management of the diamondback moth, Annu. Rev. Entomol. 38, 275–301.CrossRefGoogle Scholar
  313. Tanaka S., Nishida T., Ohsaki N. (2007) Sequential rapid adaptation of indigenous parasitoid wasps to the invasive butterfly Pieris brassicae, Evolution 61, 1791–1802.PubMedCrossRefGoogle Scholar
  314. Thangstad O.P., Iversen T.H., Slupphaug G., Bones A. (1990) Immunocytochemical localization of myrosinase in Brassica napus L., Planta 180, 245–248.CrossRefGoogle Scholar
  315. Thangstad O.P., Evjen K., Bones A.M. (1991) Immunogold-EM localization of myrosinase, Protoplasma 161, 85–93.CrossRefGoogle Scholar
  316. Thangstad O.P., Winge P., Husebye H., Bones A.M. (1993) The thioglucoside glucohydrolase (myrosinase) gene family in Brassicacea, Plant Mol. Biol. 23, 511–524.PubMedCrossRefGoogle Scholar
  317. Thangstad O.P., Bones A.M., Holtan S., Moen L., Rossiter J.T. (2001) Microautoradiographic localisation of a glucosinolate precursor to specific cells in Brassica napus L. embryos indicates a separate transport pathway into myrosin cells, Planta 213, 207–213.PubMedCrossRefGoogle Scholar
  318. Thangstad O.P., Gilde B., Chadchawan S., Seem M., Husebye H., Bradley D., Bones A.M. (2004) Cell specific, cross-species expression of myrosinases in Brassica napus, Arabidopsis thaliana and Nicotiana tabacum, Plant Mol. Biol. 54, 597–611.PubMedCrossRefGoogle Scholar
  319. Thomma B., Cammue B., Thevissen K. (2002) Plant defensins, Planta 216, 193–202.PubMedCrossRefGoogle Scholar
  320. Traynier R.M.M. (1967a) Stimulation of oviposition by the cabbage root fly Erioischia brassicae, Entomol. Exp. Appl. 10, 401–412.CrossRefGoogle Scholar
  321. Traynier R.M.M. (1967b) Effect of host plant odour on the behaviour of the adult cabbage root fly, Erioischia brassicae, Entomol. Exp. Appl. 10, 321–328.CrossRefGoogle Scholar
  322. Traynier R.M.M., Truscott R.J.W. (1991) Potent natural egg-laying stimulant for cabbage butterfly Pieris rapae, J. Chem. Ecol. 17, 1371–1380.CrossRefGoogle Scholar
  323. Tripathi M.K., Mishra A.S. (2007) Glucosinolates in animal nutrition: A review, Anim. Feed Sci. Tech. 132, 1–27.CrossRefGoogle Scholar
  324. Tscharntke T., Hawkins B.A. (2002) Multitrophic level interactions, Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
  325. Tuttle A.F., Ferro D.N., Idoine K. (1988) Role of visual and olfactory stimuli in host finding of adult cabbage root flies, Delia radicum, Entomol. Exp. Appl. 47, 37–44.CrossRefGoogle Scholar
  326. U.N. (1935) Genomic analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization, Japan J. Bot. 7, 389–452.Google Scholar
  327. Ulland S., Ian E., Mozuraitis R., Borg-Karlson A.K., Meadow R., Mustaparta H. (2008) Methyl salicylate, identified as primary odorant of a specific receptor neuron type, inhibits oviposition by the moth Mamestra brassicae L. (Lepidoptera, Noctudae), Chem. Senses 33, 35–46.PubMedCrossRefGoogle Scholar
  328. Ulmer B.J. (2002) Crucifer host plant suitability for bertha armyworm (Mamestra configrata) and diamondback moth (Plutella xylostella). Doctoral thesis, College of Graduate Studies and Research, Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.Google Scholar
  329. Ulmer B.J., Gillott C., Woods D., Erlandson M. (2002) Diamondback moth, Plutella xylostella (L.), feeding and oviposition preferences on glossy and waxy Brassica rapa (L.) lines, Crop Prot. 21, 327–331.CrossRefGoogle Scholar
  330. Ulmer B.J., Gillott C., Erlandson M. (2003) Conspecific eggs and bertha armyworm, Mamestra configrata (Lepidoptera: Noctuidae), Oviposition site selection, Environ. Entomol. 32, 529–534.CrossRefGoogle Scholar
  331. Ulmer B.J., Dosdall L.M. (2006) Glucosinolate profile and oviposition behavior in relation to the susceptibilities of Brassicaceae to the cabbage seedpod weevil, Entomol. Exp. Appl. 121, 203–213.CrossRefGoogle Scholar
  332. Valantin-Morison M., Meynard J.M., Dore T. (2007) Effects of crop management and surrounding field environment on insect incidence in organic winter oilseed rape (Brassica napus L.), Crop Prot. 26, 1108–1120.CrossRefGoogle Scholar
  333. Van Dam N.M., Raaijmakers C.E., Van der Putten W.H. (2005) Root herbivory reduces growth and survival of the shoot feeding specialist Pieris rapae on Brassica nigra, Entomol. Exp. Appl. 115, 161–170.CrossRefGoogle Scholar
  334. Van Dam N., Raaijmakers C. (2006) Local and systemic induced responses to cabbage root fly larvae (Delia radicum) in Brassica nigra and B. oleracea, Chemoecology 16, 17–24.CrossRefGoogle Scholar
  335. Van Loon J.J.A., Blaakmeer A., Griepink F.C., Van Beek T.A., Schoonhoven L.M., De Groot A. (1992) Leaf surface compound from Brassica oleracea (Cruciferae) induces oviposition by Pieris brassicae (Lepidoptera: Pieridae), Chemoecology 3, 39–44.CrossRefGoogle Scholar
  336. Van Loon J.J.A., Wang C.Z., Nielsen J.K., Gols R., Qiu Y.T. (2002) Flavonoids from cabbage are feeding stimulants for diamondback moth larvae additional to glucosinolates: Chemoreception and behaviour, Entomol. Exp. Appl. 104, 27–34.CrossRefGoogle Scholar
  337. Verhoeven D.T.H., Verhagen H., Goldbohm R.A., Van den Brandt P.A., Van Poppel G. (1997) A review of mechanisms underlying anticarcinogenicity by Brassica vegetables, Chem.-Biol. Interact. 103, 79–129.PubMedCrossRefGoogle Scholar
  338. Verkerk R.H.J., Wright D.J. (1996) Common cabbage resistance mechanisms against the diamondback moth: still an open book, Ann. Appl. Biol. 128, 571–577.CrossRefGoogle Scholar
  339. Verschaffelt E. (1910) De oorzaak der voedselkeus bij eenige plantenetende insecten, Versl. gewone Vergad. Akad. Amst. 19, 594–600.Google Scholar
  340. Vet L.E.M., Dicke M. (1992) Ecology of infochemical use by natural enemies in a tritrophic context, Ann. Rev. Entomol. 37, 141–172.CrossRefGoogle Scholar
  341. Vig K. (2002) Data on the biology of the crucifer flea beetle, Phyllotreta cruciferae (Goeze, 1777) (Coleoptera, Chrysomelidae, Alticinae), Mededelingen (Rijksuniversiteit te Gent. Fakulteit van de Landbouwkundige en Toegepaste Biologische Wetenschappen) 67, 537–546.Google Scholar
  342. Visvalingam S., Hønsi T.G., Bones A.M. (1998) Sulphate and micronutrients can modulate the expression levels of myrosinases in Sinapis alba L. plants, Physiol. Plant. 104, 30–37.CrossRefGoogle Scholar
  343. Wang J., Chen Z., Du J., Sun Y., Liang A. (2005) Novel insect resistance in Brassica napus developed by transformation of chitinase and scorpion toxin genes, Plant Cell Rep. 24, 549–555.PubMedCrossRefGoogle Scholar
  344. Warton B., Matthiessen J.N., Shackleton M.A. (2003) Crossenhancement: enhanced biodegradation of isothiocyanates in soils previously treated with metham sodium, Soil Biol. Biochem. 35, 1123–1127.CrossRefGoogle Scholar
  345. Williams I.H. (2006) Integrating parasitoids into management of pollen beetle on oilseed rape, Agron. Res. 4 (Special Issue), 465–470.Google Scholar
  346. Williams J.S., Cooper R.M. (2004) The oldest fungicide and newest phytoalexin — a reappraisal of the fungitoxicity of elemental sulphur, Plant Pathol. 53, 263–279.CrossRefGoogle Scholar
  347. Wittstock U., Halkier B.A. (2002) Glucosinolate research in the Arabidopsis era, Trends Plant Sci. 7, 263–270.PubMedCrossRefGoogle Scholar
  348. Wittstock U., Agerbirk N., Stauber E.J., Olsen C.E., Hippler M., Mitchell-Olds T., Gershenzon J., Vogel H. (2004) Successful herbivore attack due to metabolic diversion of a plant chemical defense, Proc. Natl Acad. Sci. (USA) 101, 4859–4864.CrossRefGoogle Scholar
  349. Wolfson J. (1980) Oviposition response of Pieris rapae to environmentally induced variation in Brassica nigra, Entomol. Exp. Appl. 27, 223–232.CrossRefGoogle Scholar
  350. Wright D.J., Verkerk R.H.J. (1995) Integration of chemical and biological control systems for arthropods: Evaluation in a multitrophic context, Pestic. Sci. 44, 207–218.CrossRefGoogle Scholar
  351. Xue J., Lenman M., Falk A., Rask L. (1992) The glucosinolate-degrading enzyme myrosinase in Brassicaceae is encoded by a gene family, Plant Mol. Biol. 18, 387–398.PubMedCrossRefGoogle Scholar
  352. Zabala M. De.T., Grant M., Bones A.M., Bennett R., Lim Y.S., Kissen R., Rossiter J.T. (2005) Characterisation of recombinant epithiospecifier protein and its over-expression in Arabidopsis thaliana, Phytochemistry 66, 859–867.CrossRefGoogle Scholar
  353. Zhang G., Zhou W. (2006) Genetic analyses of agronomic and seed quality traits of synthetic oilseed Brassica napus produced from interspecific hybridization of B. campestris and B. oleracea, J. Genet. 85, 45–51.PubMedCrossRefGoogle Scholar
  354. Zhou W.J., Zhang L.W. (2001) Oilseed rape, in: Wu J.L., Zhang G.P. (Eds.), Seed Production and Quality Control in Crops, Zhejiang University Press, Hangzhou, China, pp. 78–95.Google Scholar
  355. Zukalová H., Vaŝák J. (2002) The role and effects of glucosinolates of Brassica species — A review, Rost. Výroba 48, 175–180.Google Scholar

Copyright information

© INRA, EDP Sciences 2009

Authors and Affiliations

  • Ishita Ahuja
    • 1
  • Jens Rohloff
    • 1
  • Atle Magnar Bones
    • 1
  1. 1.Department of BiologyNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations