Agronomy for Sustainable Development

, Volume 29, Issue 4, pp 497–501 | Cite as

Detection of transgenic cp4 epsps genes in the soil food web

  • Miranda M. Hart
  • Jeff R. Powell
  • Robert H. Gulden
  • David J. Levy-Booth
  • Kari E. Dunfield
  • K. Peter Pauls
  • Clarence J. Swanton
  • John N. Klironomos
  • Jack T. Trevors
Research Article

Abstract

The persistence and movement of transgenic DNA in agricultural and natural systems is largely unknown. This movement poses a threat of horizontal gene transfer and possible proliferation of genetically modified DNA into the general environment. To assess the persistence of transgenic DNA in a field of Roundup Ready® corn, we quantified the presence of the transgene for glyphosate tolerance within a soil food web. Using quantitative real-time PCR, we identified the cp4 epsps transgene in bulk soil microarthropods, nematodes, macroarthropods and earthworms sampled within the corn cropping system. We found evidence of the transgene at all dates and in all animal groups. Transgenic DNA concentration in animal was significantly higher than that of background soil, suggesting the animals were feeding directly on transgenic plant material. It remains to be tested whether this DNA was still within the plant residues, present as free, extracellular DNA or had already undergone genetic transformation into competent bacterial cells. These results are the first to demonstrate the persistence of transgenic crop DNA residues within a food web.

agriculture DNA environment corn foodweb glyphosate soil transgenic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andow D.A,. Zwahlen C. (2006) Assessing environmental risks of transgenic plants, Ecol. Lett. 9, 196–214.PubMedCrossRefGoogle Scholar
  2. Bohan D.A., Boffey C.W.H., Brooks D.R., Clark S.J., Dewar A.M., Firbank L.G., Haughton A.J., Hawes C., Heard M.S., May M.J., Osborne J.L., Perry J.N., Rothery P., Roy D.P., Scott R.J., Squire G.R., Woiwod, I.P. and Champion G.T. (2005) Effects on weed and invertebrate abundance and diversity of herbicide management in genetically modified herbicide-tolerant winter-sown oilseed rape, Proc. R. Soc. B 272, 463–474.PubMedCrossRefGoogle Scholar
  3. Brooks D.R., Bohan D.A., Champion G.T., Haughton A.J., Hawes C., Heard M.S., Clark S.J., Dewar A.M., Firbank L.G., Perry J.N., Rothery P., Scott R.J., Woiwod I.P., Birchall C., Skellern M.P., Walker J.H., Baker, P., Bell D., Browne E.L., Dewar A.J.G., Fairfax C.M., Garner, B.H., Haylock L.A., Horne S.L., Hulmes S.E., Mason N.S., Norton L.R., Nuttall P., Randle Z., Rossall M.J., Sands R.J.N., Singer E.J., Walker M.J. (2005) Invertebrate responses to the management of genetically modified herbicide-tolerant and conventional spring crops. I. Soil-surface-active invertebrates, Philos. T. Roy. Soc. B 358, 1847–1862.Google Scholar
  4. de Vries J., Wackernagel W. (2004) Microbial horizontal gene transfer and the DNA release from transgenic crop plants, Plant Soil 226, 91–104.Google Scholar
  5. Donegan K.K., Seidler R.J., Fieland V.J., Schaller D.L., Palm C.J., Ganio L.M., Cardwell D.M., Edwards C.A. (1991) The assessment of populations of soil inhabiting invertebrates, Agr. Ecosyst. Environ. 34, 145–176.CrossRefGoogle Scholar
  6. Edwards C.A. (1991) The assessment of populations of soil inhabiting invertebrates, Agr. Ecosyst. Environ., 145–176.Google Scholar
  7. Gebhard F., Smalla K. (1999) Monitoring field releases of genetically modified sugar beets for persistence of transgenic plant DNA and horizontal gene transfer, FEMS Microbiol. Ecol. 28, 261–272.CrossRefGoogle Scholar
  8. Gulden R.H., Lerat, S., Blackshaw, R.E., Powell J.R., Levy Booth D., Dunfield K.E., Trevors J.T., Pauls K.P., Klironomos J.N., Swanton C.J. (2008) Factors affecting the presence and persistence of plant DNA in the soil environment in corn and soybean rotations, Weed Sci. 56, 767–774.CrossRefGoogle Scholar
  9. Gulden R.H., Lerat S., Hart M.M., Powell J.R., Trevors J.T., Pauls K.P., Klironomos J.N., Swanton C.J. (2005) Quantitation of transgenic plant DNA in leachate water: Real-time polymerase chain reaction analysis, J. Agr. Food Chem. 53, 5858–5865.CrossRefGoogle Scholar
  10. Heinnemann J.A., Traavik T. (2004) Problems in monitoring horizontal gene transfer in field trials of transgenic plants, Nat. Biotechnol. 22, 1105–1110.CrossRefGoogle Scholar
  11. Kowalchuk G.A., Bruinsma M., van Veen J.A. (2003) Assessing responses of soil microorganisms to GM plants, Trends Ecol. Evol. 18, 403–410.CrossRefGoogle Scholar
  12. Lerat S., England L.S., Vincent M.L., Pauls K.P., Swanton C.J., Klironomos J.N., Trevors J.T. (2005) Real-time polymerase chain reaction (PCR) quantification of the transgenes for Roundup Ready corn and Roundup Ready soybean in soil samples, J. Agr. Food Chem. 53, 1337–1342.CrossRefGoogle Scholar
  13. Levy-Booth D.J., Campbell R.G., Gulden R.H., Hart M.M., Powell J.R., Klironomos J.N., Pauls K.P., Swanton C.J., Trevors J.T., Dunfield K.E. (2007) The DNA Cycle in Soil: free DNA in the soil environment, Soil Biol. Biochem. 39, 2977–2991.CrossRefGoogle Scholar
  14. Liphadzi K.B.K., Al-Khatib C.N., Bensch P.W., Stahlman J.A., Dille T., Todd C.W., Rice M.J., Horak M.J., Head G. (2005) Soil microbial and nematode communities as affected by glyphosate and tillage practices in a glyphosate-resistant cropping system, Weed Sci. 53, 536–545.CrossRefGoogle Scholar
  15. Loureiro I., Escorial C., Garcia-Baudin J.M., Chueca C. (2009) Hybridization, fertility and herbicide resistance of hybrids between wheat and Aegilops biuncialis, Agron. Sustain. Environ. 29, 237–245.CrossRefGoogle Scholar
  16. Marvier M., Van Acker R.C. (2005) Can crop transgenes be kept on a leash? Front. Ecol. Environ. 3, 93–100.CrossRefGoogle Scholar
  17. Nielsen K.M., Bones A.M., Smalla K., van Elsas J.D. (1998) Horizontal gene transfer from transgenic plants to terrestrial bacteria — a rare event? FEMS Microbiol. Rev. 22, 79–103.PubMedGoogle Scholar
  18. Obryki J.J., Losey J.E., Taylor O.R., Jesse C.C. (2001) Transgenic insecticidal corn: beyond insecticidal toxicity to ecological complexity, Bioscience 51, 353–361.CrossRefGoogle Scholar
  19. Steinberger Y. (1997) Decomposition of genetically engineered tobacco under field conditions: persistence of the proteinase inhibitor I product and effects of soil microbial respiration and protozoa, nematode and microarthropod populations, J. Appl. Ecol. 34, 767–777.CrossRefGoogle Scholar

Copyright information

© Springer S+B Media B.V. 2009

Authors and Affiliations

  • Miranda M. Hart
    • 1
  • Jeff R. Powell
    • 1
  • Robert H. Gulden
    • 2
  • David J. Levy-Booth
    • 3
  • Kari E. Dunfield
    • 4
  • K. Peter Pauls
    • 2
  • Clarence J. Swanton
    • 2
  • John N. Klironomos
    • 1
  • Jack T. Trevors
    • 3
  1. 1.Department of Integrative BiologyUniversity of GuelphGuelphCanada
  2. 2.Department of Plant AgricultureUniversity of GuelphGuelphCanada
  3. 3.Department of Environmental BiologyUniversity of GuelphGuelphCanada
  4. 4.Department of Land Resource ScienceUniversity of GuelphGuelphCanada

Personalised recommendations