Agronomy for Sustainable Development

, Volume 30, Issue 2, pp 367–400 | Cite as

Tillage management effects on pesticide fate in soils. A review

  • Lionel AllettoEmail author
  • Yves Coquet
  • Pierre Benoit
  • Djilali Heddadj
  • Enrique Barriuso
Open Access
Review article


Reducing tillage intensity through the implementation of conservation practices is a way to reach a more sustainable agriculture. Reducing tillage is indeed an efficient way to control soil erosion and to decrease production costs. Nonetheless, the environmental impact of reduced tillage is not well known because conservation techniques may induce strong changes in soil physicochemical properties and biological activity. Knowledge on the fate of applied pesticides under conservation practices is particularly important from this point of view. We review here the advances in the understanding, quantification and prediction of the effects of tillage on pesticide fate in soils. We found the following major points: (1) for most dissipation processes such as retention, degradation and transfer, results of pesticide behaviour studies in soils are highly variable and sometimes contradictory. This variability is partially explained by the multiplicity of processes and contributive factors, by the variety of their interactions, and by their complex temporal and spatial dynamics. In addition, the lack of a thorough description of tillage systems and sampling strategy in most reports hampers any comprehensive interpretation of this variability. (2) Implementation of conservation tillage induces an increase in organic matter content at the soil surface and its gradual decrease with depth. This, in turn, leads to an increase in pesticide retention in the topsoil layer. (3) Increasing retention of pesticides in the topsoil layer under conservation tillage decreases the availability of the pesticides for biological degradation. This competition between retention and degradation leads to a higher persistence of pesticides in soils, though this persistence can be partially compensated for by a more intensive microbial activity under conservation tillage. (4) Despite strong changes in soil physical properties under conservation tillage, pesticide transfer is more influenced by initial soil conditions and climatic conditions than by tillage. Conservation tillage systems such as no-tillage improve macropore connectivity, which in turn increases pesticide leaching. We conclude that more knowledge is needed to fully understand the temporal and spatial dynamics of pesticide in soil, especially preferential flows, in order to improve the assessment of pesticide risks, and their relation to tillage management.

conventional tillage conservation tillage herbicide retention degradation transport soil carbon 


  1. Afyuni M.M., Wagger M.G., Leidy R.B. (1997) Runoff of two sulfonylurea herbicides in relation to tillage system and rainfall intensity, J. Environ. Qual. 26, 1318–1326.Google Scholar
  2. Agreste (2004) Enquête sur les pratiques culturales en 2001, Chiffres et Données — Série Agriculture — no 159.Google Scholar
  3. Agreste (2008) Enquête sur les pratiques culturales en 2006, Chiffres et Données — Série Agriculture no 200.Google Scholar
  4. Alletto L., Benoit P., Bergheaud V., Coquet Y. (2008) Temperature and water pressure head effects on the degradation of the diketonitrile metabolite of isoxaflutole in a loamy soil under two tillage systems, Environ. Pollut. 156, 678–688.PubMedGoogle Scholar
  5. Andreini M.S., Steenhuis T.S. (1990) Preferential paths of flow under conventional and conservation tillage, Geoderma 46, 85–102.Google Scholar
  6. Arshad M.A., Franzluebbers A.J., Azooz R.H. (1999) Components of surface soil structure under conventional and no-tillage in northwestern Canada, Soil Till. Res. 53, 41–47.Google Scholar
  7. Aubertot J.N., Barbier J.M., Carpentier A., Gril J.J., Guichard L., Lucas P., Savary S., Savini I., Voltz M. (2005) Pesticides, agriculture et environnement. Réduire l’utilisation des pesticides et en limiter les impacts environnementaux, Rapport d’Expertise scientifique collective, INRA et Cemagref (France).Google Scholar
  8. Baker J.L., Johnson H.P. (1979) The effect of tillage systems on pesticides runoff from small watersheds, T. ASAE 22, 554–559.Google Scholar
  9. Balesdent J., Mariotti A., Boisgontier D. (1990) Effect of tillage on soil organic carbon mineralization estimated from 13C abundance in maize fields, J. Soil Sci. 41, 587–596.Google Scholar
  10. Banks P.A., Robinson E.L. (1982) The influence of straw mulch on the soil reception and persistence of metribuzin, Weed Sci. 30, 164–168.Google Scholar
  11. Banks P.A., Robinson E.L. (1986) Soil reception and activity of acetochlor, alachlor, and metolachlor as affected by wheat (Triticum aestivum) straw and irrigation, Weed Sci. 34, 607–611.Google Scholar
  12. Barnes C.J., Goetz A.J., Lavy T.L. (1989) Effects of imazaquin residues on cotton (Gossypium hirsutum), Weed Sci. 37, 820–824.Google Scholar
  13. Barr D.P., Aust S.D. (1994) Mechanisms white rot fungi use to degrade pollutants, Environ. Sci. Technol. 28, 78A.PubMedGoogle Scholar
  14. Barriuso E., Calvet R. (1992) Soil type and herbicide adsorption, Int. J. Environ. An. Ch. 46, 117–128.Google Scholar
  15. Barriuso E., Feller C., Calvet R., Cerri C. (1992) Sorption of atrazine, terbutryn and 2,4-D herbicides in two Brazilian Oxisols, Geoderma 53, 155–167.Google Scholar
  16. Basta N.T., Huhnke J.H., Stiegler J.H. (1997) Atrazine runoff from conservation tillage systems: a simulated rainfall study, J. Soil Water Conserv. 52, 44–48.Google Scholar
  17. Baughman T.A., Shaw D.R., Rhodes G.N., Mueller T.C. (1996) Effects of tillage on chlorimuron persistence, Weed Sci. 44, 162–165.Google Scholar
  18. Baughman T.A., Shaw D.R., Webster E.P., Boyette M. (2001) Effect of cotton (Gossypium hirsutum) tillage systems on off-site movement of fluometuron, norflurazon, and sediment in runoff, Weed Technol. 15, 184–189.Google Scholar
  19. Baumhardt R.L., Lascano R.J. (1996) Rain infiltration as affected by wheat residue amount and distribution in ridged tillage, Soil Sci. Soc. Am. J. 60, 1908–1913.Google Scholar
  20. Bedos C., Cellier P., Calvet R., Barriuso E., Gabrielle B. (2002) Mass transfer of pesticides into the atmosphere by volatilization from soils and plants: overview, Agronomie 22, 21–33.Google Scholar
  21. Berglof T., Koskinen W.C., Brucher J., Kylin H. (2000) Linuron sorptiondesorption in field-moist soils, J. Agr. Food Chem. 48, 3718–3721.Google Scholar
  22. Bernoux M., Cerri C.C., Cerri C.E.P., Neto M.S., Metay A., Perrin A.S., Scopel E., Razafimbelo T., Blavet D., Piccolo M.D., Pavei M., Milne E. (2006) Cropping systems, carbon sequestration and erosion in Brazil, a review, Agron. Sustain. Dev. 26, 1–8.Google Scholar
  23. Biederbeck V.O., Campbell C.A., Hunter J.H. (1997) Tillage effects on soil microbial and biochemical characteristics in a fallow-wheat rotation in a dark brow soil, Can. J. Soil Sci. 77, 309–316.Google Scholar
  24. Blevins R.L., Frye W.W. (1993) Conservation tillage: an ecological approach to soil management, Adv. Agron. 51, 33–78.Google Scholar
  25. Bosch D.D., Potter T.L., Truman C.C., Bednarz C.W., Strickland T.C. (2005) Surface runoff and lateral subsurface flow as a response to conservation tillage and soil-water conditions, T. ASAE 48, 2137–2144.Google Scholar
  26. Bouché M.B. (1972) Lombriciens de France. Écologie et systématique, Annales de zoologie-écologie animale, numéro hors-série, Ed. INRA, 671 p.Google Scholar
  27. Boyd S.A., Xiangcan J., Lee J.F. (1990) Sorption of nonionic organic compounds by corn residues from a no-tillage field, J. Environ. Qual. 19, 734–738.Google Scholar
  28. Bragagnolo N., Mielniczuk J. (1990) Mulch from eight crop sequences and its effects on soil temperature, moisture, emergence and initial growth of corn, Rev. Bras. Cienc. Solo 14, 91–98.Google Scholar
  29. Brown B.A., Hayes R.M., Tyler D.D., Mueller T.C. (1994) Effect of tillage and cover crop on fluometuron adsorption and degradation under controlled conditions, Weed Sci. 42, 629–634.Google Scholar
  30. Brown B.A., Hayes R.M., Tyler D.D., Mueller T.C. (1996) Effect of longterm Vetch (Vicia villosa) cover crop and tillage system on fluometuron dissipation from surface soil, Weed Sci. 44, 171–175.Google Scholar
  31. Chapman R.A., Cole C.M. (1982) Observations on the influence of water and soil pH on the persistance of insecticides, J. Environ. Sci. Health 17, 487–504.Google Scholar
  32. Chin Y.P., Weber W.J., Eadie B.L. (1990) Estimating the effects of dispersed organic polymers on the sorption of contaminants by natural solids. 2. Sorption in the presence of humic and other natural macromolecules, Environ. Sci. Technol. 24, 837–842.Google Scholar
  33. Clay S.A., Koskinen W.C. (1990) Adsorption and desorption of atrazine, hydroxyatrazine, and s-glutathione atrazine on two soils, Weed Sci. 38, 262–266.Google Scholar
  34. Clay S.A., Koskinen W.C., Carlson P. (1991) Alachlor movement through intact soil columns taken from two tillage systems, Weed Technol. 5, 485–489.Google Scholar
  35. Clay S.A., Clay D.E., Koskinen W.C., Berg R.K. (1998) Application method: impacts on atrazine and alachlor movement, weed control, and corn yield in three tillage systems, Soil Till. Res. 48, 215–224.Google Scholar
  36. Coats K.H., Smith B.D. (1964) Dead-end pore volume and dispersion in porous media, SPE J. 4, 73–84.Google Scholar
  37. Comia R.A., Stenberg M., Nelson P., Rydberg T., Håkansson I. (1994) Soil and crop responses to different tillage systems, Soil Till. Res. 29, 335–355.Google Scholar
  38. CTIC (2006) National crop residues management survey, Conservation tillage information center, Ames, IA.Google Scholar
  39. Curran W.S., Liebl R.A., Simmons F.W. (1992) Effects of tillage and application method on clomazone, imazaquin, and imazethapyr persistence, Weed Sci. 40, 482–489.Google Scholar
  40. Dalal R.C., Henderson P.A., Glasby J.M. (1991) Organic matter and microbial biomass in a vertisol after 20 yr of zero-tillage, Soil Biol. Biochem. 23, 435–441.Google Scholar
  41. Dao T.H. (1991) Field decay of wheat straw and its effects on metribuzin and S-ethyl metribuzin sorption and elution from crop residues, J. Environ. Qual. 20, 203–208.Google Scholar
  42. Dao T.H., Lavy T.L. (1978) Atrazine adsorption on soil as influence by temperature, moisture content and electrolyte concentration, Weed Sci. 26, 303–309.Google Scholar
  43. Ding G., Novak J.M., Amarasiriwardena D., Hunt P.G., Xing B. (2002a) Soil organic matter characteristics as affected by tillage management, Soil Sci. Soc. Am. J. 66, 421–429.Google Scholar
  44. Ding G.W., Novak J.M., Herbert S., Xing B.S. (2002b) Long-term tillage effects on soil metolachlor sorption and desorption behavior, Chemosphere 48, 897–904.PubMedGoogle Scholar
  45. Ding G.W., Liu X.B., Herbert S., Novak J., Amarasiriwardena D., Xing B.H. (2006) Effect of cover crop management on soil organic matter, Geoderma 130, 229–239.Google Scholar
  46. Doran J.W. (1980) Soil microbial and biochemical changes associated with reduced tillage, Soil Sci. Soc. Am. J. 44, 765–771.Google Scholar
  47. Drijber R.A., Doran J.W., Parkhurst A.M., Lyon D.J. (2000) Changes in soil microbial community structure with tillage under long-term wheat-fallow management, Soil Biol. Biochem. 32, 1419–1430.Google Scholar
  48. Drury C.F., Tan C.S., Welacky T.W., Oloya T.O., Hamill A.S., Weaver S.E. (1999) Red clover and tillage influence on soil temperature, water content, and corn emergence, Agron. J. 91, 101–108.Google Scholar
  49. Düring R.A., Hummel H.E. (1993) Soil tillage as a parameter influencing the fate of three selected soil herbicides, Med. Fac. Landbouww. Univ. Gent 58/3a, 827–835.Google Scholar
  50. Düring R.A., Hummel H.E. (1999) Herbicide and metabolite movement in different soils as studied by computer assisted microlysimeters, Chemosphere 39, 641–654.Google Scholar
  51. Düring R.A., Hoss T., Gath S. (2002) Depth distribution and bioavailability of pollutants in long-term differently tilled soils, Soil Till. Res. 66, 183–195.Google Scholar
  52. Edwards W.M., Norton L.D., Redmond C.E. (1988) Characterizing macropores that affect infiltration in nontilled soil, Soil Sci. Soc. Am. J. 52, 483–487.Google Scholar
  53. Edwards W.M., Shipitalo M.J., Owens L.B., Norton L.D. (1989) Water and nitrate movement in eathworm burrows within long-term notill cornfields, J. Soil Water Conserv. 44, 240–243.Google Scholar
  54. Edwards W.M., Shipitalo M.J., Dick W.A., Owens L.B. (1992a) Rainfall intensity affects transport of water and chemicals through macropores in no-till soil, Soil Sci. Soc. Am. J. 56, 52–58.Google Scholar
  55. Edwards W.M., Shipitalo M.J., Traina S.J., Edwards C.A., Owens L.B. (1992b) Role of Lumbricus terrestris (L.) burrows on quality of infiltrating water, Soil Biol. Biochem. 24, 1555–1561.Google Scholar
  56. Ela S.D., Gupta S.C., Rawles W.J. (1992) Macropore and surface seal interactions affecting water infiltration into soil, Soil Sci. Soc. Am. J. 56, 714–721.Google Scholar
  57. Erbach D.C., Lovely W.G. (1975) Effect of plant residue on herbicide performance in no-tillage corn, Weed Sci. 23, 512–515.Google Scholar
  58. Essington M.E., Tyler D.D., Wilson G.V. (1995) Fluometuron behavior in long-term tillage plots, Soil Sci. 160, 405–414.Google Scholar
  59. Fawcett R.S., Christensen B.R., Tierney D.P. (1994) The impact of conservation tillage on pesticide runoff into surface water: a review and analysis, J. Soil Water Conserv. 49, 126–135.Google Scholar
  60. Felsot A.S., Mitchell J.K., Kenimer A.L. (1990) Assessment of management practices for reducing pesticide runoff from sloping cropland in Illinois, J. Environ. Qual. 19, 539–545.Google Scholar
  61. Ferri M.V.W., Vidal R.A., Gomes J., Dick D.P., de Souza R.F. (2002) Activity of the herbicide acetochlor in soil under no-till and conventional tillage system, Pesqui. Agropecu. Bras. 37, 1697–1703.Google Scholar
  62. Flury M., Leuenberger J., Studer B., Flühler H. (1995) Transport of anions and herbicides in a loamy and a sandy field soil, Water Resour. Res. 30, 1945–1954.Google Scholar
  63. Fomsgaard I.S., Spliid N.H., Felding G. (2003) Leaching of pesticides through normal-tillage and low-tillage soil — A lysimeter study. II, Glyphosate J. Environ. Sci. Health B. 38, 19–35.Google Scholar
  64. Fortin J., Gagnon-Bertrand E., Vezina L., Rompre M. (2002) Preferential bromide and pesticide movement to tile drains under different cropping practices, J. Environ. Qual. 31, 1940–1952.PubMedGoogle Scholar
  65. Franti T.G., Peter C.J., Tierney D.P., Fawcett R.S., Myers J.L. (1998) Reducing herbicide losses from tile-outlet terraces, J. Soil Water Conserv. 53, 25–31.Google Scholar
  66. Gan J., Becker R.L., Koskinen W.C., Buhler D.D. (1996) Degradation of atrazine in two soils as a function of concentration, J. Environ. Qual. 25, 1064–1072.Google Scholar
  67. Gao J.P., Maguhn J., Spitzauer P., Kettrup A. (1998) Sorption of pesticides in the sediment of the Teufelsweiher pond (Southern Germany). II: Competitive adsorption, desorption of aged residues and effect of dissolved organic carbon, Water Res. 32, 2089–2094.Google Scholar
  68. Gaston L.A., Locke M.A. (1996) Bentazon mobility through intact, unsaturated columns of conventional and no-till Dundee soil, J. Environ. Qual. 25, 1350–1356.Google Scholar
  69. Gaston L.A., Locke M.A. (2000) Acifluorfen sorption, degradation, and mobility in a Mississippi delta soil, Soil Sci. Soc. Am. J. 64, 112–121.Google Scholar
  70. Gaston L.A., Locke M.A., Zablotowicz R.M. (1996) Sorption and degradation of bentazon in conventional- and no-till Dundee soil, J. Environ. Qual. 25, 120–126.Google Scholar
  71. Gaston L.A., Boquet D.J., Bosch M.A. (2001) Fluometuron wash-off from cover crop residues and fate in a loessial soil, Soil Sci. 166, 681–690.Google Scholar
  72. Gaston L.A., Boquet D.J., Bosch M.A. (2003) Fluometuron sorption and degradation in cores of silt loam soil from different tillage and cover crop systems, Soil Sci. Soc. Am. J. 67, 747–755.Google Scholar
  73. Gaynor J.D., Stone J.A., Vyn T.J. (1987) Tillage systems and atrazine and alachlor residues on a poorly drained soil, Can. J. Soil Sci. 67, 959–963.Google Scholar
  74. Gaynor J.D., MacTavish D.C., Findlay W.I. (1995) Atrazine and metolachlor loss in surface and subsurface runoff from three tillage treatments in corn, J. Environ. Qual. 24, 246–256.Google Scholar
  75. Gaynor J.D., MacTavish D.C., Labaj A.B. (1998) Atrazine and metolachlor residues in Brookston CL following conventional and conservation tillage culture, Chemosphere 36, 3199–3210.PubMedGoogle Scholar
  76. Gaynor J.D., Tan C.S., Ng H.Y.F., Drury C.F., Welacky T.W., vanWesenbeeck I.J. (2000) Tillage and controlled drainage-subirrigated management effects on soil persistence of atrazine, metolachlor, and metribuzin in corn, J. Environ. Qual. 29, 936–947.Google Scholar
  77. Gaynor J.D., Tan C.S., Drury C.F., Ng H.Y.F., Welacky T.W., van Wesenbeeck I.J. (2001) Tillage, intercrop, and controlled drainagesubirrigation influence atrazine, metribuzin, and metolachlor loss, J. Environ. Qual. 30, 561–572.PubMedGoogle Scholar
  78. Gebhardt M.R., Daniel T.C., Schweizer E.E., Allmaras R.R. (1985) Conservation tillage, Science 230, 625–630.PubMedGoogle Scholar
  79. Ghadiri H., Shea P.J., Wicks G.A., Haderlie L.C. (1984) Atrazine dissipation in conventional-till and no-till sorghum, J. Environ. Qual. 13, 549–552.Google Scholar
  80. Ghidey F., Blanchard P.E., Lerch R.N., Kitchen N.R., Alberts E.E., Sadler E.J. (2005) Measurement and simulation of herbicide transport from the corn phase of three cropping systems, J. Soil Water Conserv. 60, 260–273.Google Scholar
  81. Gish T.J., Helling C.S., Mojasevic M. (1991) Preferential movement of atrazine and cyanazine under field conditions, T. ASAE 34, 1699–1705.Google Scholar
  82. Gish T.J., Shirmohammadi A., Wienhold B.J. (1994) Field-scale mobility and persistence of commercial and starch-encapsulated atrazine and alachlor, J. Environ. Qual. 23, 355–359.Google Scholar
  83. Gish T.J., Shirmohammadi A., Vyravipillai R., Wienhold B.J. (1995) Herbicide leaching under tilled and no-tillage fields, Soil Sci. Soc. Am. J. 59, 895–901.Google Scholar
  84. Glotfelty D.E. (1987) The effects of conservation tillage practices on pesticide volatilization and degradation, in: Logan T.J. et al. (Eds.), Effects of conservation tillage on groundwater quality: Nitrates and pesticides. Lewis, Chelsea, MI, pp. 56–62.Google Scholar
  85. Granovsky A.V., McCoy E.L., Dick W.A., Shipitalo M.J., Edwards W.M. (1993) Water and chemical transport through long-term no-till and plowed soils, Soil Sci. Soc. Am. J. 57, 1560–1567.Google Scholar
  86. Grant R.F., Izaurralde R.C., Chanasyk D.S. (1990) Soil temperature under conventional and minimum tillage: simulation and experimental verification, Can. J. Soil Sci. 70, 289–304.Google Scholar
  87. Grey T.L., Walker R.H., Wehtje G.R.H., Hancock H.G. (1997) Sulfentrazone adsorption and mobility as affected by soil and pH, Weed Sci. 45, 733–738.Google Scholar
  88. Gupta S.C., Schneider E.C., Swan J.B. (1988) Planting depth and tillage interactions on corn emergence, Soil Sci. Soc. Am. J. 52, 1122–1127.Google Scholar
  89. Hall J.K., Mumma R.O. (1994) Dicamba mobility in conventionally tilled and non-tilled soil, Soil Till. Res. 30, 3–17.Google Scholar
  90. Hall J.K., Murray M.R., Hartwig N.L. (1989) Herbicide leaching and distribution in tilled and untilled soil, J. Environ. Qual. 18, 439–445.Google Scholar
  91. Hall J.K., Mumma R.O., Watts D.W. (1991) Leaching and runoff losses of herbicides in a tilled and untilled field, Agr. Ecosyst. Environ. 37, 303–314.Google Scholar
  92. Hall J.K., Jones G.A., Hickman M.V., Amistadi M.K., Bogus E.R., Mumma R.O., Hartwig N.L., Hoffman L.D. (1998) Formulation and adjuvant effects on leaching of atrazine and metolachlor, J. Environ. Qual. 27, 1334–1347.Google Scholar
  93. Hansen N.C., Moncrief J.F., Gupta S.C., Capel P.D., Olness A.E. (2001) Herbicide banding and tillage system interactions on runoff losses of alachlor and cyanazine, J. Environ. Qual. 30, 2120–2126.PubMedGoogle Scholar
  94. Hanson J. (2006) History of tillage. Improving Soil — Enhancing Profit. Manitoba-North Dakota Zero Tillage Farmers Association Workshop, Bismarck, ND, 9–10 February 2006.Google Scholar
  95. Harman W.L., Wang E., Williams J.R. (2004) Reducing atrazine losses: Water quality implications of alternative runoff control practices, J. Environ. Qual. 33, 7–12.PubMedGoogle Scholar
  96. Heatwole C.D., Zacharias S., Mostaghimi S., Dillaha T.A. (1997) Movement of field-applied atrazine, metolachlor, and bromide in a sandy loam soil, T. ASAE 40, 1267–1276.Google Scholar
  97. Isensee A.R., Sadeghi A.M. (1993) Impact of tillage practice on runoff and pesticide transport, J. Soil Water Conserv. 48, 523–527.Google Scholar
  98. Isensee A.R., Sadeghi A.M. (1994) Effects of tillage and rainfall on atrazine residue levels in soil, Weed Sci. 42, 462–467.Google Scholar
  99. Isensee A.R., Sadeghi A.M. (1996) Effect of tillage reversal on herbicide leaching to groundwater, Soil Sci. 161, 382–389.Google Scholar
  100. Isensee A.R., Sadeghi A.M. (1997) Interactions of tillage and rainfall on atrazine leaching under field and laboratory conditions, Chemosphere 34, 2715–2723.Google Scholar
  101. Isensee A.R., Nash R.G., Helling C.S. (1990) Effect of conventional vs. no-tillage on pesticide leaching to shallow groundwater, J. Environ. Qual. 19, 434–440.Google Scholar
  102. Jaynes D.B., Ahmed S.I., Kung K.J.S., Kanwar R.S. (2001) Temporal dynamics of preferential flow to a subsurface drain, Soil Sci. Soc. Am. J. 65, 1368–1376.Google Scholar
  103. Johnson M.D., Wyse D.L., Lueschen W.E. (1989) The influence of herbicide formulation on weed control in four tillage systems, Weed Sci. 37, 239–249.Google Scholar
  104. Kabir Z. (2005) Tillage or no-tillage: Impact on mycorrhizae, Can. J. Plant Sci. 85, 23–29.Google Scholar
  105. Kasteel R., Garnier P., Vachier P., Coquet Y. (2007) Dye tracer infiltration in the plough layer after straw incorporation, Geoderma 137, 360–369.Google Scholar
  106. Kenimer A.L., Mostaghimi S., Young R.W., Dillaha T.A., Shanholtz V.O. (1987) Effects of residue cover on pesticide losses from conventional and no-tillage systems, T. ASAE 30, 953–959.Google Scholar
  107. Kitchen N.R., Hughes D.E., Donald W.W., Alberts E.E. (1998) Agrichemical movement in the root-zone of claypan soils: ridgeand mulch-tillage systems compared, Soil Till. Res. 48, 179–193.Google Scholar
  108. Kung K.J.S., Steenhuis T.S., Kladivko E.J., Gish T.J., Bubenzer G., Helling C.S. (2000) Impact of preferential flow on the transport of adsorbing and non-adsorbing tracers, Soil Sci. Soc. Am. J. 64, 1290–1296.Google Scholar
  109. Lafrance P., Marineau L., Perreault L., Villeneuve J.P. (1994) Effect of natural dissolved organic matter found in groundwater on soil adsorption and transport of pentachlorophenol, Environ. Sci. Technol. 28, 2314–2320.PubMedGoogle Scholar
  110. Lal R., Mahboubi A.A., Fausey N.R. (1994) Long-term tillage and rotation effects on properties of a Central Ohio Soil, Soil Sci. Soc. Am. J. 58, 517–522.Google Scholar
  111. Lal R., Reicosky D.L., Hanson J.D. (2007) Evolution of the plow over 10,000 years and the rationale for no-till farming, Soil Till. Res. 93, 1–12.Google Scholar
  112. Lamb J.A., Dowdy R.H., Anderson J.L., Allmaras R.R. (1998) Water quality in an irrigated sandy soil: ridge tillage in rotated corn and soybean compared with full-width tillage in continuous corn, Soil Till. Res. 48, 167–177.Google Scholar
  113. Lavorenti A., Rocha A.A., Prata F., Regitano J.B., Tornisielo V.L., Pinto O.B. (2003) Reactions of diclosulam in a Rhodic Hapludox soil under no-till and conventional tillage systems, Rev. Bras. Cienc. Solo 27, 183–190.Google Scholar
  114. Levanon D., Codling E.E., Meisinger J.J., Starr J.L. (1993) Mobility of agrochemicals through soil from two tillage systems, J. Environ. Qual. 22, 155–161.Google Scholar
  115. Levanon D., Meisinger J.J., Codling E.E., Starr J.L. (1994) Impact of tillage on microbial activity and the fate of pesticides in the upper soil, Water Air Soil Poll. 72, 179–189.Google Scholar
  116. Li K., Liu W.P., Xu D.M., Lee S.J. (2003) Influence of organic matter and pH on bentazone sorption in soils, J. Agr. Food Chem. 51, 5362–5366.Google Scholar
  117. Li K., Xing B.S., Torello W.A. (2005) Effect of organic fertilizers derived dissolved organic matter on pesticide sorption and leaching, Environ. Pollut. 134, 187–194.PubMedGoogle Scholar
  118. Locke M.A. (1992) Sorption-desorption kinetics of alachlor in surface soil from two soybean tillage systems, J. Environ. Qual. 21, 558–566.Google Scholar
  119. Locke M.A., Zablotowicz R.M., Gaston L.A. (1995) Fluometuron herbicide interactions in crop residue-managed soils, in: Buehring N.W., Kingery W.A. (Eds.), Proc. Southern Conservation Tillage Conf. for Sustainable Agriculture: A focus on water quality. Jackson, MS. MAFES, Mississippi State University, Mississippi State, Starkville, MS, pp. 55–58.Google Scholar
  120. Locke M.A., Gaston L.A., Zablotowicz R.M. (1996) Alachlor biotransformation and sorption in soil from two soybean tillage systems, J. Agr. Food Chem. 44, 1128–1134.Google Scholar
  121. Locke M.A., Harper S.S. (1991a) Metribuzin degradation in soil: IEffects of residue amendment, metribuzin level, and soil depth, Pestic. Sci. 31, 221–237.Google Scholar
  122. Locke M.A., Harper S.S. (1991b) Metribuzin degradation in soil: IIEffects of tillage, Pestic. Sci. 31, 239–247.Google Scholar
  123. Locke M.A., Bryson C.T. (1997) Herbicide-soil interactions in reduced tillage and plant residue management systems, Weed Sci. 45, 307–320.Google Scholar
  124. Locke M.A., Zablotowicz R.M., Bauer P.J., Steinriede R.W., Gaston L.A. (2005) Conservation cotton production in the southern United States: herbicide dissipation in soil and cover crops, Weed Sci. 53, 717–727.Google Scholar
  125. Logan T.J., Eckert D.J., Beak D.G. (1994) Tillage, crop and climatic effects on runoff and tile drainage losses of nitrate and four herbicides, Soil Till. Res. 30, 75–103.Google Scholar
  126. Loux M.M., Liebl R.A., Slife F.W. (1989) Availability and persistence of imazaquin, imazethapyr, and clomazone in soil, Weed Sci. 37, 259–267.Google Scholar
  127. Lowery B., Hartwig R.C., Stoltenberg D.E., Fermanich K.J., McSweeney K. (1998) Groundwater quality and crop-yield responses to tillage management on a Sparta sand, Soil Till. Res. 48, 225–237.Google Scholar
  128. Ma L.W., Selim H.M. (2005) Predicting pesticide transport in mulchamended soils: A two-compartment model, Soil Sci. Soc. Am. J. 69, 318–327.Google Scholar
  129. Malone R.W., Warner R.C., Byers M.E. (1996) Runoff losses of surfaceapplied metribuzin as influenced by yard waste compost amendments, no-tillage, and conventional-tillage, B. Environ. Contam. Tox. 57, 536–543.Google Scholar
  130. Malone R.W., Shipitalo M.J., Ma L., Ahuja L.R., Rojas K.W. (2001) Macropore component assessment of the root zone water quality model (RZWQM) using no-till soil blocks, T. ASAE 44, 843–852.Google Scholar
  131. Martin C.D., Baker J.L., Erbach D.C., Johnson H.P. (1978) Washoff of herbicides applied to corn residue, T. ASAE 21, 1164–1168.Google Scholar
  132. Masse L., Patni N.K., Jui P.Y., Clegg B.S. (1996) Tile effluent quality and chemical losses under conventional and no tillage — Part 2: atrazine and metolachlor, T. ASAE 39, 1673–1679.Google Scholar
  133. Masse L., Patni N.K., Jui P.Y., Clegg B.S. (1998) Groundwater quality under conventional and no tillage: II. Atrazine, deethylatrazine, and metolachlor, J. Environ. Qual. 27, 877–883.Google Scholar
  134. Masutti C. (2004) Le Dust Bowl, la politique de conservation des ressources et les écologues aux États-Unis dans les années 1930, Thèse de Doctorat de l’Université Louis Pasteur.Google Scholar
  135. Mazzoncini M., Lorenzi R., Risaliti R., Sorce C., Ginanni M., Curadi M., Pini R. (1998) Diclofop-methyl dissipation in clay soil under different tillage systems in central Italy, Soil Till. Res. 46, 241–250.Google Scholar
  136. Mills J.A., Witt W.W. (1991) Dissipation of imazaquin and imazethapyr under conventional and no-tillage soybean (Glycine max), Weed Technol. 5, 586–591.Google Scholar
  137. Mills J.A., Witt W.W., Barrett M. (1989) Effects of tillage on the efficacy and persistence of clomazone in soybean (Glycine max), Weed Sci. 37, 233–238.Google Scholar
  138. Monks C.D., Banks P.A. (1993) Effect of straw, ash, and tillage on dissipation of imazaquin and imazethapyr, Weed Sci. 41, 133–137.Google Scholar
  139. Moonen A.C., Barberi P. (2004) Size and composition of the weed seedbank after 7 years of different cover-crop-maize management systems, Weed Res. 44, 163–177.Google Scholar
  140. Myers J.L., Wagger M.G., Leidy R.B. (1995) Chemical movement in relation to tillage system and simulated rainfall intensity, J. Environ. Qual. 24, 1183–1192.Google Scholar
  141. Nanny M.A., Maza J.P. (2001) Noncovalent interactions between monoaromatic compounds and dissolved humic acids: A deuterium NMR T-1 relaxation study, Environ. Sci. Technol. 35, 379–384.PubMedGoogle Scholar
  142. Novak J.M., Watts D.W., Hunt P.G. (1996) Long-term tillage effects on atrazine and fluometuron sorption in coastal plain soils, Agr. Ecosyst. Environ. 60, 165–173.Google Scholar
  143. Ochsner T.E., Stephens B.M., Koskinen W.C., Kookana R.S. (2006) Sorption of a hydrophilic pesticide: Effects of soil water content, Soil Sci. Soc. Am. J. 70, 1991–1997.Google Scholar
  144. Ogden C.B., van Es H.M., Wagenet R.J., Steenhuis T.S. (1999) Spatialtemporal variability of preferential flow in a clay soil under no-till and plow-till, J. Environ. Qual. 28, 1264–1273.Google Scholar
  145. Olson B.L.S., Regehr D.L., Janssen K.A., Barnes P.L. (1998) Tillage system effects on atrazine loss in surface water runoff, Weed Technol. 12, 646–651.Google Scholar
  146. Otto S., Riello L., During R.A., Hummel H.E., Zanin G. (1997) Herbicide dissipation and dynamics modelling in three different tillage systems, Chemosphere 34, 163–178.Google Scholar
  147. Peigné J., Ball B.C., Roger-Estrade J., David C. (2007) Is conservation tillage suitable for organic farming? A review, Soil Use Manage. 23, 129–144.Google Scholar
  148. Phillips R.E., Quisenberry V.L., Zeleznik J.M., Dunn G.H. (1989) Mechanism of water entry into simulated macropores, Soil Sci. Soc. Am. J. 53, 1629–1635.Google Scholar
  149. Pinheiro E.F.M., Pereira M.G., Anjos L.H.C. (2004) Aggregate distribution and soil organic matter under different tillage systems for vegetable crops in a Red Latosol from Brazil, Soil Till. Res. 77, 79–84.Google Scholar
  150. Pot V., Simunek J., Benoit, P., Coquet Y., Yra A., Martinez-Cordon M. J. (2005) Impact of rainfall intensity on the transport of two herbicides in undisturbed grassed filter strip soil cores, J. Contam. Hydrol. 81, 63–88.PubMedGoogle Scholar
  151. Potter T.L., Truman C.C., Bosch D.D., Bednarz C.W. (2003) Cotton defoliant runoff as a function of active ingredient and tillage, J. Environ. Qual. 32, 2180–2188.PubMedGoogle Scholar
  152. Potter T.L., Truman C.C., Bosch D.D., Bednarz C. (2004) Fluometuron and pendimethalin runoff from strip and conventionally tilled cotton in the southern Atlantic Coastal Plain, J. Environ. Qual. 33 2122–2131.PubMedGoogle Scholar
  153. Potter T.L., Truman C.C., Strickland T.C., Bosch D.D., Webster T.M., Franklin D.H., Bednarz C.W. (2006) Combined effects of constant versus variable intensity simulated rainfall and reduced tillage management on cotton preemergence herbicide runoff, J. Environ. Qual. 35, 1894–1902.PubMedGoogle Scholar
  154. Preston C.M., Newman R.H., Rother P. (1994) Using 13C CPMAS NMR to assess the effects of cultivation on the organic matter of particle size fractions in a grassland soil, Soil Sci. 157, 26–35.Google Scholar
  155. Quisenberry V.L., Phillips R.E., Zeleznik J.M. (1994) Spatial distribution of water and chloride macropore flow in a well-structured soil, Soil Sci. Soc. Am. J. 58, 1294–1300.Google Scholar
  156. Rasmussen K.J. (1991) Reduced soil tillage and Italian ryegrass as catch crop. II. Soil bulk density, root development and soil chemistry, Dan. J. Plant Soil Sci. 95, 139–154.Google Scholar
  157. Réal B., Malaval C., Bonin L., Labreuche J., Barriuso E., Benoit P., Bedos C., Köller R., Heddadj D., Quéré L., Cariolle M., Caboulet D., Alletto L. (2007) Impacts des TCSL sur les transferts de produits phytosanitaires, Évaluation des impacts environnementaux des techniques culturales sans labour (TCSL) en France, Edition ADEME, pp. 250–268.Google Scholar
  158. Rector R.J., Regehr D.L., Barnes P.L., Loughin T.M. (2003) Atrazine, Smetolachlor, and isoxaflutole loss in runoff as affected by rainfall and management, Weed Sci. 51, 810–816.Google Scholar
  159. Reddy K.N., Locke M.A. (1996) Imazaquin spray retention, foliar washoff, and runoff losses under simulated rainfall, Pestic. Sci. 48, 179–187.Google Scholar
  160. Reddy K.N., Locke M.A. (1998) Sulfentrazone sorption, desorption, and mineralization in soils from two tillage systems, Weed Sci. 46, 494–500.Google Scholar
  161. Reddy K.N., Zablotowicz R.M., Locke M.A. (1995a) Chlorimuron adsorption, desorption, and degradation in soils from conventional tillage and no-tillage systems, J. Environ. Qual. 24, 760–767.Google Scholar
  162. Reddy K.N., Locke M.A., Wagner S.C., Zablotowicz R.M., Gaston L.A., Smeda R.J. (1995b) Chlorimuron ethyl sorption and desorption kinetics in soils and herbicide-dessicated cover crop residues, J. Agr. Food Chem. 43, 2752–2757.Google Scholar
  163. Reddy K.N., Locke M.A., Gaston L.A. (1997a) Tillage and cover crop effects on cyanazine adsorption and desorption kinetics, Soil Sci. 162, 501–509.Google Scholar
  164. Reddy K.N., Locke M.A., Zablotowicz R.M. (1997b) Soil type and tillage effects on sorption of cyanazine and degradation products, Weed Sci. 45, 727–732.Google Scholar
  165. Renner K.A., Schabenberger O., Kells J.J. (1998) Effect of tillage and application method on corn (Zea mays) response to imidazolinone residues in soil, Weed Technol. 12, 281–285.Google Scholar
  166. Rhoton F.E., Shipitalo M.J., Lindbo D.L. (2002) Runoff and soil loss from midwestern and southeastern US silt loam soils as affected by tillage practice and soil organic matter content, Soil Till. Res. 66, 1–11.Google Scholar
  167. Ritter W.F., Chirnside A.E.M., Scarborough R.W. (1996) Movement and degradation of triazines, alachlor, and metolachlor in sandy soils, J. Environ. Sci. Health 31, 2699–2721.Google Scholar
  168. Rovira A.D., Smettem K.R.J., Lee K.E. (1987) Effect of rotation and conservation tillage on earthworms in a Red-brown earth under wheat, Aust. J. Soil Res. 38, 829–834.Google Scholar
  169. Sadeghi A.M., Isensee A.R. (1992) Effect of tillage systems and rainfall patterns on atrazine distribution in soil, J. Environ. Qual. 21, 464–469.Google Scholar
  170. Sadeghi A.M., Isensee A.R. (1996) Impact of reversing tillage practices on movement and dissipation of atrazine in soil, Soil Sci. 161, 390–397.Google Scholar
  171. Sadeghi A.M., Isensee A.R. (1997) Alachlor and cyanazine persistence in soil under different tillage and rainfall regimes, Soil Sci. 162, 430–438.Google Scholar
  172. Sadeghi A.M., Isensee A.R. (2001) Impact of hairy vetch cover crop on herbicide transport under field and laboratory conditions, Chemosphere 44, 109–118.PubMedGoogle Scholar
  173. Sadeghi A.M., Isensee A.R., Shelton D.R. (1998) Effect of tillage age on herbicide dissipation: A side-by-side comparison using microplots, Soil Sci. 163, 883–890.Google Scholar
  174. Sadeghi A.M., Isensee A.R., Shirmohammadi A. (2000) Influence of soil texture and tillage on herbicide transport, Chemosphere 41, 1327–1332.PubMedGoogle Scholar
  175. Salloum M.J., Dudas M.J., McGill W.B. (2001) Variation of 1-naphthol sorption with organic matter fractionation: the role of physical conformation, Org. Geochem. 32, 709–719.Google Scholar
  176. Satchell J.E. (1983) Earthworm Ecology from Darwin to vermiculture. Ed. Chapman and Hall, London, 495 p.Google Scholar
  177. Sauer T.J., Daniel T.C. (1987) Effect of tillage system on runoff losses of surface-applied pesticides, Soil Sci. Soc. Am. J. 51, 410–415.Google Scholar
  178. Seifert S., Shaw D.R., Kingery W.L., Snipes C.E., Wesley R.A. (2001a) Imazaquin mobility and persistence in a Sharkey clay soil as influenced by tillage systems, Weed Sci. 49, 571–577.Google Scholar
  179. Seifert S., Shaw D.R., Zablotowicz R.M., Wesley R.A., Kingery W.L. (2001b) Effect of tillage on microbial characteristics and herbicide degradation in a Sharkey clay soil, Weed Sci. 49, 685–693.Google Scholar
  180. Selim H.M., Zhou L., Zhu H. (2003) Herbicide retention in soil as affected by sugarcane mulch residue, J. Environ. Qual. 32, 1445–1454.PubMedGoogle Scholar
  181. Senesi N., Testini C. (1982) Physico-chemical investigations of interaction mechanisms between s-triazine herbicides and soil humic acids, Geoderma 28, 129–146.Google Scholar
  182. Seta A.K., Blevins R.L., Frye W.W., Barfield B.J. (1993) Reducing soil erosion and agricultural chemical losses with conservation tillage, J. Environ. Qual. 22, 661–665.Google Scholar
  183. Seyfried M.S., Rao P.S.C. (1987) Solute transport in undisturbed columns of an aggregated tropical soil: preferential flow effects, Soil Sci. Soc. Am. J. 51, 1434–1444.Google Scholar
  184. Shang C., Arshad M.A. (1998) Sorption of clopyralid, dicamba and MCPA by two soils with conventional and no-till management, Can. J. Soil Sci. 78, 181–186.Google Scholar
  185. Shelton D.R., Sadeghi A.M., Isensee A.R. (1998) Effect of tillage on atrazine bioavailability, Soil Sci. 163, 891–896.Google Scholar
  186. Shipitalo M.J., Edwards W.M. (1996) Effects of initial water content on macropore/matrix flow and transport of surface-applied chemicals, J. Environ. Qual. 25, 662–670.Google Scholar
  187. Shipitalo M.J., Owens L.B. (2003) Atrazine, deethylatrazine, and deisopropylatrazine in surface runoff from conservation tilled watersheds, Environ. Sci. Technol. 37, 944–950.PubMedGoogle Scholar
  188. Shipitalo M.J., Owens L.B. (2006) Tillage system, application rate, and extreme event effects on herbicide losses in surface runoff, J. Environ. Qual. 35, 2186–2194.PubMedGoogle Scholar
  189. Shipitalo M.J., Edwards W.M., Dick W.A., Owens L.B. (1990) Initial storm effects on macropore transport of surface-applied chemicals in no-till soil, Soil Sci. Soc. Am. J. 54, 1530–1536.Google Scholar
  190. Shipitalo M.J., Edwards W.M., Owens L.B. (1997) Herbicide losses in runoff from conservation-tilled watersheds in a corn-soybean rotation, Soil Sci. Soc. Am. J. 61, 267–272.Google Scholar
  191. Sigua G.C., Isensee A.R., Sadeghi A.M. (1993) Influence of rainfall intensity and crop residue on leaching of atrazine through intact notill soil cores, Soil Sci. 156, 225–232.Google Scholar
  192. Sigua G.C., Isensee A.R., Sadeghi A.M. (1995) Influence of tillage, antecedent moisture, and rainfall timing on atrazine transport, Weed Sci. 43, 134–139.Google Scholar
  193. Singh N., Kloeppel H., Klein W. (2002) Movement of metolachlor and terbuthylazine in core and packed soil columns, Chemosphere 47, 409–415.PubMedGoogle Scholar
  194. Singh P., Kanwar R.S. (1991) Preferential solute transport through macropores in large undisturbed saturated soil columns, J. Environ. Qual. 20, 295–300.Google Scholar
  195. Six J., Elliott E.T., Paustian K. (1999) Aggregate and soil organic matter dynamics under conventional and no-tillage systems, Soil Sci. Soc. Am. J. 63, 1350–1358.Google Scholar
  196. Sleutel S., Kader M.A., Leinweber P., D’Haene K., De Neve S. (2007) Tillage management alters surface soil organic matter composition: A pyrolysis mass spectroscopy study, Soil Sci. Soc. Am. J. 71, 1620–1628.Google Scholar
  197. Sorenson B.A., Shea P.J., Roeth F.W. (1991) Effects of tillage, application time and rate on metribuzin dissipation, Weed Res. 31, 333–345.Google Scholar
  198. Stearman G.K., Lewis R.J., Tortorelli L.J., Tyler D.D. (1989) Herbicide reactivity of soil organic matter fractions in no-tilled and tilled cotton, Soil Sci. Soc. Am. J. 53, 1690–1694.Google Scholar
  199. Stehouwer R.C., Dick W.A., Traina S.J. (1993) Characteristics of earthworm burrow lining affecting atrazine sorption, J. Environ. Qual. 22, 181–185.Google Scholar
  200. Suba J.D., Essington M.E. (1999) Adsorption of fluometuron and norflurazon: Effect of tillage and dissolved organic carbon, Soil Sci. 164, 145–155.Google Scholar
  201. Szajdak L., Jezierski A., Cabrera M.L. (2003) Impact of conventional and no-tillage management on soil amino acids, stable and transient radicals and properties of humic and fulvic acids, Org. Geochem. 34, 693–700.Google Scholar
  202. Tatzber M., Stemmer M., Spiegel H., Katzlberger C., Haberhauer G., Gerzabek M. H. (2008) Impact of different tillage practices on molecular characteristics of humic acids in a long-term field experiment — An application of three different spectroscopic methods, Sci. Total Environ. 406, 256–268.PubMedGoogle Scholar
  203. Teasdale J.R., Shelton D.R., Sadeghi A.M., Isensee A.R. (2003) Influence of hairy vetch residue on atrazine and metolachlor soil solution concentration and weed emergence, Weed Sci. 51, 628–634.Google Scholar
  204. Tebrügge F., During R.A. (1999) Reducing tillage intensity — a review of results from a long-term study in Germany, Soil Till. Res. 53, 15–28.Google Scholar
  205. Torresen K.S., Skuterud R., Tandsaether H.J., Hagemo M.B. (2003) Long-term experiments with reduced tillage in spring cereals. I. Effects on weed flora, weed seedbank and grain yield, Crop Prot. 22, 185–200.Google Scholar
  206. Triplett G.B., Conner B.J., Edwards W.M. (1978) Transport of atrazine and simazine in runoff from conventional and no-tillage corn, J. Environ. Qual. 7, 77–84.Google Scholar
  207. Trojan M.D., Linden D.R. (1992) Microrelief and rainfall effects on water and solute movement in earthworm burrows, Soil Sci. Soc. Am. J. 56, 727–733.Google Scholar
  208. Ulbrich A.V., Souza J.R.P., Shaner D. (2005) Persistence and carryover effect of imazapic and imazapyr in Brazilian cropping systems, Weed Technol. 19, 986–991.Google Scholar
  209. Unger P.W. (1987) Straw mulch effects on soil temperature and sorghum germination and growth, Agron. J. 70, 858–864.Google Scholar
  210. van Genuchten M.T., Wierenga P.J. (1976) Mass transfer studies in sorbing porous media. I. Analytical solutions, Soil Sci. Soc. Am. J. 40, 473–480.Google Scholar
  211. van Genuchten M.T., Wagenet R.J. (1989) Two-site/two-region for pesticide transport and degradation: theoretical development and analytical solutions, Soil Sci. Soc. Am. J. 53, 1303–1310.Google Scholar
  212. Vasileiadis V.P., Froud-Williams R.J., Eleftherohorinos I.G. (2007) Vertical distribution, size and composition of the weed seedbank under various tillage and herbicide treatments in a sequence of industrial crops, Weed Res. 47, 222–230.Google Scholar
  213. Wagner S.C., Zablotowicz R.M., Gaston L.A., Locke M.A., Kinsella J. (1996) Bentazon degradation in soil: Influence of tillage and history of bentazon application, J. Agric. Food Chem. 44, 1593–1598.Google Scholar
  214. Walker A. (1971) Effects of soil moisture content on the availability of soil-applied herbicides to plants, Pestic. Sci. 2, 56–59.Google Scholar
  215. Watts D.W., Hall J.K. (1996) Tillage and application effects on herbicide leaching and runoff, Soil Till. Res. 39, 241–257.Google Scholar
  216. Wauchope R.D. (1978) The pesticide content of surface water draining from agrigultural fields — a review, J. Environ. Qual. 7, 459–472.Google Scholar
  217. Weber J.B., Hardy D.H., Leidy R.B. (2002) Laboratory, green-house, and field lysimeter studies of 14C-atrazine volatilization, in: Phelps W. et al. (Eds.), Pesticide environmental fate. ACS Symp. Ser. 813. Am. Chem. Soc., Washington, DC, pp. 125–142.Google Scholar
  218. Weber J.B., Taylor K.A., Wilkerson G.G. (2006) Soil cover and tillage influenced metolachlor mobility and dissipation in field lysimeters, Agron. J. 98, 19–25.Google Scholar
  219. Webster E.P., Shaw D.R. (1996) Off-site runoff losses of metolachlor and metribuzin applied to differing soybean (Glycine max) production systems, Weed Technol. 10, 556–564.Google Scholar
  220. Weed D.A.J., Kanwar R.S., Stoltenberg D.E., Pfeiffer R.L. (1995) Dissipation and distribution of herbicides in the soil profile, J. Environ. Qual. 24, 68–79.Google Scholar
  221. Weed D.A.J., Kanwar R.S., Cambardella C., Moorman T.B. (1998) Alachlor dissipation in shallow cropland soil, J. Environ. Qual. 27, 767–776.Google Scholar
  222. Whang J.M., Schomburg C.J., Glotfelty D.E., Taylor A.W. (1993) Volatilization of fonofos, chlorpyrifos, and atrazine from conventional and no-till surface soils in the field, J. Environ. Qual. 22, 173–180.Google Scholar
  223. Wienhold B.J., Gish T.J. (1994) Effect of formulation and tillage practice on volatilization of atrazine and alachlor, J. Environ. Qual. 23, 292–298.Google Scholar
  224. Worsham A.D. (1991) Role of cover crops in weed management and water quality, in: Hargrove W.L. (Ed.), Cover Crops for Clean Water, Jackson, TN, USA, pp. 141–145.Google Scholar
  225. Xing B. (2001) Sorption of naphthalene and phenanthrene by soil humic acids, Environ. Pollut. 111, 303–309.PubMedGoogle Scholar
  226. Xing B., Pignatello J.J. (1997) Dual-mode sorption of low-polarity compounds in glassy poly(vinylchloride) and soil organic matter, Environ. Sci. Technol. 31, 792–799.Google Scholar
  227. Xue S.L., Chen S., Selim H.M. (1997) Modeling alachlor transport in saturated soils from no-till and conventional tillage systems, J. Environ. Qual. 26, 1300–1307.Google Scholar
  228. Yuan G.S., Xing B.S. (1999) Site-energy distribution analysis of organic chemical sorption by soil organic matter, Soil Sci. 164, 503–509.Google Scholar
  229. Zablotowicz R.M., Locke M.A., Smeda R.J. (1998) Degradation of 2,4-D and fluometuron in cover crop residues, Chemosphere 37, 87–101.Google Scholar
  230. Zablotowicz R.M., Locke M.A., Gaston L.A., Bryson C.T. (2000) Interactions of tillage and soil depth on fluometuron degradation in a Dundee silt loam soil, Soil Till. Res. 57, 61–68.Google Scholar

Copyright information

© INRA, EDP Sciences 2009

Authors and Affiliations

  • Lionel Alletto
    • 1
    Email author
  • Yves Coquet
    • 2
  • Pierre Benoit
    • 2
  • Djilali Heddadj
    • 3
  • Enrique Barriuso
    • 2
  1. 1.Agronomy DepartmentUniversité de Toulouse — École d’ingénieurs de PurpanToulouse Cedex 3France
  2. 2.UMR 1091 INRA/AgroParisTech Environment and Arable CropsInstitut National de la Recherche Agronomique/Institut National des Sciences et Industries du Vivant et de l’EnvironnementThiverval-GrignonFrance
  3. 3.Recherche appliquée — Pôle agronomieChambres d’agriculture de BretagneVannes CedexFrance

Personalised recommendations