Skip to main content
Log in

Klinisch pharmakologische Erklärungsmodelle der Cerivastatin-assoziierten Rhabdomyolyse

Pharmacological explanations for cerivastatin associated rhabdomyolysis

  • Themenschwerpunkt „Statintherapie“
  • Published:
Wiener Medizinische Wochenschrift Aims and scope Submit manuscript

Zusammenfassung

Der Hydroxy-methylglutaryl-Coenzym-A-Reduktase-Hemmer Cerivastatin mußte im Jahr 2001, nur 4 Jahre nach Erstzulassung, aufgrund tödlicher Arzneimittelzwischenfälle wieder vom Markt genommen werden. Die hohe Rate und der Schweregrad der von Cerivastatin verursachten Rhabdomyolysen löste Bedenken bezüglich der Sicherheit aller HMG-CoA-Reduktase-Hemmer (Statine) aus. Cerivastatin weist jedoch im Vergleich zu anderen Staunen eine 16-bis 80fach höhere Frequenz von tödlichen Rhabdomyolysezwischen-fällen auf. Hierfür dürfte eine Kombination von mehreren pharmakokinetischen und pharmakodynamischen Eigenschaften von Cerivastatin verantwortlich sein. So verfügt Cerivastatin innerhalb der Substanzklasse über die höchste Bioverfügbarkeit nach oraler Applikation. Interaktionen mit anderen Arzneimitteln wie Gemfibrozil können einen weiteren Anstieg des Plasmaspiegels von Cerivastatin bewirken, und das Risiko für Nebenwirkungen an peripheren Organen erhöhen. Zudem besitzt Cerivastatin mit etwa 1 pM die niedrigste IC50 zur Inhibierung der HMG-CoA-Reduktase unter allen Statinen. Die Kombination aus hohen systemischen Spiegeln und hoher intrinsischer Aktivität führt potentiell zu Apoptose der Skelettmuskulatur und zellulärer Energieverarmung durch Ubichinonmangel. Die mit Cerivastatin assoziierten fatalen Zwischenfälle beruhen daher vermutlich auf spezifischen pharmakologischen Eigenschaften von Cerivastatin, und können nicht allgemein auf andere Vertreter der Substanzklasse übertragen werden. Die Erfahrung mit Cerivastatin unterstreicht die Wichtigkeit weiterführender Studien selbst an bereits seit langer Zeit am Markt befindlichen Substanzen, und die Bedeutung einer gewissenhaften Berichterstattung über unerwünschte Arzneimittelwirkungen durch jeden klinisch tätigen Arzt.

Summary

Because of fatal cases of rhabdomyolysis the HMG-CoA-reductase inhibitor cerivastatin had to be withdrawn from the global market in 2001. The high frequency and severity of cerivastatin-associated rhabdomyolysis caused concerns about the safety of the entire class of HMG-CoA-reductase inhibitors (statins). Still, the frequency of deadly incidents of rhabdomyolysis with cerivastatin was 16 to 80 times higher than with other statins. This seems to be due to a combination of several pharmacokinetic and pharmacodynamic characteristics of cerivastatin. Cerivastatin shows the highest oral bioavailability within its class. Interactions with other drugs like gemfibrocil may cause further elevation of cerivastatin plasma levels, thereby leading to higher frequencies of side effects in peripheral organs. With approximately 1 pM cerivastatin shows the lowest IC50 for inhibition of HMG-CoA-reductase of all statins. The combination of high systemic drug levels and high intrinsic activity potentially leads to apoptosis and energy-depletion of skeletal-muscle cells. Therefore cerivastatin-associated fatal rhabdomyolysis seems to be based on specific pharmacokinetic and pharmacodynamic properties of cerivastatin, and is not a general characteristic of all members of this drug-class. The experiences with cerivastatin support the importance of clinical studies even about well established drugs, and underline the relevance of precise reporting of adverse events by each physician.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Aberg F. Appelkvist EL, Broijersen A, Eriksson M, Angelin B, Hjemdahl P, Dallner G: Gemfibrozil-induced decrease in serum ubiquinone and alpha- and gamma-tocopherol levels in men with combined hyper-lipidaemia. Eur J Clin Invest 1998;28:235–242.

    Article  PubMed  CAS  Google Scholar 

  2. Bericht an das Bundesministerium für Gesundheit über die Zulassung von Cerivastatin-haltigen Arzneimitteln (Lipobay, Zenas, Vazqol) und die nachfolgende Sicherheitsüberwachung. August 2001.

  3. Bischoff H, Heller AH: Preclinical and clinical pharmacology of cerivastatin. Am J Cardiol 1998;82:18J-25J. Review.

    Article  PubMed  CAS  Google Scholar 

  4. Bolego C, Baetta R, Bellosta S, Corsini A, Paoletti R: Safety considerations for statins. Curr Opin Lipidol 2002;13:637–644.

    Article  PubMed  CAS  Google Scholar 

  5. Bottorff M, Hansten P: Long-term safety of hepatic hydroxymethyl glutaryl coenzyme A reductase inhibitors: the role of metabolism-monograph for physicians. Arch Intern Med 2000;160:2273–2278. Review.

    Article  PubMed  CAS  Google Scholar 

  6. Brown MS. Goldstein JL: Multivalent feedback regulation of HMG CoA reductase, a control mechanism coordinating isoprenoid synthesis and cell growth. J Lipid Res 1980;21:505–517.Review.

    PubMed  CAS  Google Scholar 

  7. Dansette PM, Jaoen M. Pons C: HMG-CoA reductase activity in human liver microsomes: comparative inhibition by statins. Exp Toxicol Pathol 2000;52:145–148.

    PubMed  CAS  Google Scholar 

  8. Downs JR. Clearfield M, Tyroler HA, Whitney EJ, Kruyer W, Langendorfer A, Zagrebelsky V, Weis S, Shapiro DR, Beere PA, Gotto AM: Air Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TEXCAPS): additional perspectives on tolerability of long-term treatment with lovastatin. Am J Cardiol 2001;87:1074–1079.

    Article  PubMed  CAS  Google Scholar 

  9. Farmer JA, Torre-Amione G: Comparative tolerability of the HMG-CoA reductase inhibitors. Drug Saf. 2000;23:197–213. Review.

    Article  PubMed  CAS  Google Scholar 

  10. Folkers K, Langsjoen P, Willis R, Richardson P, Xia LJ, Ye CQ, Tamagawa H: Lovastatin decreases coenzyme Q levels in humans. Proc Natl Acad Sci USA. 1990;87:8931–8934.

    Article  PubMed  CAS  Google Scholar 

  11. Freemantle N, Hill S: Medicalisation, limits to medicine, or never enough money to go around? BMJ 2002:324:864–865.

    Article  PubMed  Google Scholar 

  12. Furberg CD, Pitt B: Withdrawal of cerivastatin from the world market. Curr Control Trials Cardiovasc Med 2001;2:205–207.

    Article  PubMed  Google Scholar 

  13. Gaist D, Rodriguez LA, Huerta C, Hallas J, Sindrup SH: Lipid-lowering drugs and risk of myopathy: a population-based follow-up study. Epidemiology 2001;12:565–569.

    Article  PubMed  CAS  Google Scholar 

  14. Gibaldi M: Pharmacokinetic variability-drug interactions. Biophar-maceutics and clinical pharmacokinetics. 4th edition. Philadelphia, Lea & Febiger, 1991.

    Google Scholar 

  15. Glossmann H: Cerivastatin (Lipobay®, Baycol®) and the ABC of pharmacokinetics and pharmacodynamics. http://bmj.com/cgi/eletters/323/7309/359/a # 16 270, Aug 2001.

  16. Goldstein JL, Brown MS: Regulation of the mevalonate pathway. Nature. 1990:343:425–430. Review.

    Article  PubMed  CAS  Google Scholar 

  17. Goli AK, Goli SA, Byrd RP Jr, Roy TM: Simvastatin-induced lactic acidosis: a rare adverse reaction? Clin Pharmacol Ther 2002:72:461–464.

    Article  PubMed  Google Scholar 

  18. Guengerich FP: Cytochrome P-450 3A4: regulation and role in drug metabolism. Annu Rev Pharmacol Toxicol 1999;39:1–17. Review.

    Article  PubMed  CAS  Google Scholar 

  19. Hamelin BA, Turgeon J: Hydrophilicity/lipophilicity: relevance for the pharmacology and clinical effects of HMG-CoA reductase inhibitors. Trends Pharmacol Sci 1998;19:26–37.Review.

    Article  PubMed  CAS  Google Scholar 

  20. Hamilton-Craig I: Statin-associated myopathy. Med J Aus. 2001 Nov: 175:486–489. Review.

    CAS  Google Scholar 

  21. Igel M, Sudhop T, von Bergmann K: Metabolism and drug interactions of 3-hydroxy-3-methylglutaryl coenzyme A-reductase inhibitors (statins). Eur J Clin Pharmacol 2001;57:357–364. Review.

    Article  PubMed  CAS  Google Scholar 

  22. Isaacsohn J, Insull W Jr, Stein E, Kwiterovich P, Patrick MA, Brazg R, Dujovne CA, Shan M, Shugrue-Crowley E, Ripa S, Tota R: The Cerivastatin Study Group: Long-term efficacy and safety of cerivastatin 0.8 mg in patients with primary hypercholesterolemia. Clin Cardiol 2001: 24(9 Suppl):IV1–9.

    Article  PubMed  CAS  Google Scholar 

  23. Kaneider NC, Reinisch CM, Dunzendorfer S, Meierhofer C, Djanani A, Wiedermann CJ: Induction of apoptosis and inhibition of migration of inflammatory and vascular wall cells by cerivastatin. Atherosclerosis 2001;158:23–33.

    Article  PubMed  CAS  Google Scholar 

  24. Kostner GM: Pharmacology of HMG CoA reductase inhibitors (statins) Wien Med Wochenschr 1999; 149:120–4. Review.

    PubMed  CAS  Google Scholar 

  25. Kostner KM, Kostner GM: Lowering cholesterol 1998. Cholesterol synthesis inhibitors compared. Wien Klin Wochenschr 1998;110:625–630. Review.

    PubMed  CAS  Google Scholar 

  26. Laaksonen R, Ojala JP, Tikkanen MJ, Himberg JJ: Serum ubiqui-none concentrations after short-and long-term treatment with HMG-CoA reductase inhibitors. Eur J Clin Pharmacol 1994;46:313–317.

    Article  PubMed  CAS  Google Scholar 

  27. Lucas RA, Weathersby BB, Rocco VK, Pepper JM, Butler KL: Rhabdomyolysis associated with cerivastatin: six cases within 3 months at one hospital. Pharmacotherapy 2002;22:771–774.

    Article  PubMed  Google Scholar 

  28. Mortensen SA, Leth A, Agner E, Rohde M: Dose-related decrease of serum coenzyme Q10 during treatment with HMG-CoA reductase inhibitors. Mol Aspects Med 1997;18(Suppl):137–144.

    Article  Google Scholar 

  29. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 2002;360:7–22.

    Google Scholar 

  30. Mück W: Clinical pharmacokinetics of cerivastatin. Clin Pharmacokinet 2000;39:99–116.

    Article  PubMed  Google Scholar 

  31. Ogasahara S, Engel AG, Frens D, Mack D: Muscle coenzyme Q deficiency in familial mitochondrial encephalomyopathy. Proc Natl Acad Sci USA. 1989;86:2379–2382.

    Article  PubMed  CAS  Google Scholar 

  32. Paoletti R, Corsini A, Bellosta S: Pharmacological interactions of statins. Atheroscler Suppl 200;3:35–40. Review.

  33. Pedersen TR, Berg K, Cook TJ, Faergeman O, Haghfelt T, Kjekshus J, Miettinen T, Musliner TA, Olsson AG, Pyorala K, Thorgeirsson G, Tobert JA, Wedel H, Wilhelmsen L: Safety and tolerability of cholesterol lowering with simvastatin during 5 years in the Scandinavian Simvastatin Survival Study. Arch Intern Med 1996;156:2085–2092.

    Article  PubMed  CAS  Google Scholar 

  34. Prueksaritanont T, Zhao JJ, Ma B, Roadcap BA, Tang C, Qiu Y, Liu L, Lin JH, Pearson PG, Baillie TA: Mechanistic studies on metabolic interactions between gemfibrozil and statins. J Pharmacol Exp Ther 2002;301:1042–1051.

    Article  PubMed  CAS  Google Scholar 

  35. Randomised trial of cholesterol lowering in 4 444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S) Lancet 1994;344:1383–1389.

  36. Rosenson RS, Tangney CC: Antiatherothrombotic properties of statins: implications for cardiovascular event reduction. JAMA 1998;279:1643–1650. Review.

    Article  PubMed  CAS  Google Scholar 

  37. Scott HD, Thacher-Renshaw A, Rosenbaum SE, Waters WJ Jr, Green M, Andrews LG, Faich GA: Physician reporting of adverse drug reactions. Results of the Rhode Island Adverse Drug Reaction Reporting Project. JAMA 1990;263:1785–1788.

    Article  PubMed  CAS  Google Scholar 

  38. Shepherd J, Cobbe SM, Ford I, Isles CG, Lorimer AR, MacFarlane PW, McKillop JH, Packard CJ: Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. N Engl J Med 1995;333:1301–1307.

    Article  PubMed  CAS  Google Scholar 

  39. Sinzinger H, Wolfram R, Peskar BA: Muscular side effects of statins. J Cardiovasc Pharmacol 2002;40:163–171.

    Article  PubMed  CAS  Google Scholar 

  40. Sinzinger H: Side effects of Statins — prevalence, relevance, consequences. Wien Klin Wochenschr 2002; 114:887–888.

    PubMed  Google Scholar 

  41. Staffa JA, Chang J, Green L: Cerivastatin and reports of fatal rhabdomyolysis. N Engl J Med 2002;346:539–540.

    Article  PubMed  Google Scholar 

  42. Stein E, Isaacsohn J, Stoltz R, Mazzu A, Liu MC, Lane C, Heller AH: Pharmacodynamics safety, tolerability, and pharmacokinetics of the 0.8-mg dose of cerivastatin in patients with primary hypercholesterolemia. Am J Cardiol 1999;83:1433–1436.

    Article  PubMed  CAS  Google Scholar 

  43. Thibault A, Samid D, Tompkins AC, Figg WD, Cooper MR, Hohl RJ, Trepel J, Liang B, Patronas N, Venzon DJ, Reed E, Myers CE: Phase I study of lovastatin, an inhibitor of the mevalonate pathway, in patients with cancer. Clin Cancer Res. 1996;2:483–491.

    PubMed  CAS  Google Scholar 

  44. Watts GF, Castelluccio C, Rice-Evans C, Taub NA, Baum H, Quinn PJ: Plasma coenzyme Q (ubiquinone) concentrations in patients treated with simvastatin. J Clin Pathol 1993;46:1055–1057.

    Article  PubMed  CAS  Google Scholar 

  45. Wong WW, Tan MM, Xia Z, Dimitroulakos J, Minden MD, Penn LZ: Cerivastatin triggers tumor-specific apoptosis with higher efficacy than lovastatin. Clin Cancer Res 2001;7:2067–2075.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeitlinger, M., Müller, M. Klinisch pharmakologische Erklärungsmodelle der Cerivastatin-assoziierten Rhabdomyolyse. WMW 153, 250–254 (2003). https://doi.org/10.1046/j.1563-258X.2003.03029.x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1046/j.1563-258X.2003.03029.x

Schlüsselwörter

Keywords

Navigation