Skip to main content
Log in

Wundheilung durch sterile Fliegenlarven: mechanische, biochemische und mikrobiologische Grundlagen

Woundhealing by means of sterile fly larvae: Mechanical, biochemical and microbiological basis

  • Themenschwerpunkt „Infektionen“
  • Published:
Wiener Medizinische Wochenschrift Aims and scope Submit manuscript

Zusammenfassung

In letzter Zeit fand eine alte Behand-lungsmethode für therapierefraktäre Wunden, die so-genannte „Madentherapie“, erneut Beachtung in der medizinischen Literatur. Das größte Hindernis für einen breiten klinischen Einsatz von Fliegenlarven der Art Lucilia sericata in der Wundbehandlung scheint allerdings das mangelnde Wissen über die Biologie dieser Tiere und deren Wirkungsweise in bezug auf die Wundheilung zu sein. Gegenständlicher Artikel präsentiert einen detaillierten Überblick über den gegenwärtigen Wissensstand der zugrundeliegenden Mechanismen und versucht, neue Forschungsziele zu definieren.

Summary

Recently an old treatment for refractory wounds, the so-called “Maggot-Therapy“, once again received attention in medical literature. It seems, that the biggest obstacle for a broad clinical use of fly larvae of the species Lucilia sericata in wound treatment is the lack of knowledge about the biology of these animals and the underlying mechanisms with respect to wound therapy. In this review, the known and possible mechanisms of action of Maggot-Therapy are presented and opportunities for further research are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Angel K, Grassberger M, Huemer F, Stackl W: Madentherapie bei Fournier’scher Gangrän ’ erste Erfahrungen mit einer neuen Therapie. Aktuelle Urologie 2000;31:440–443.

    Article  Google Scholar 

  2. Baer WS: The treatment of chronic osteomyelitis with the maggot (larva of the blowfly). J Bone Joint Surg 1931; 13:438–475.

    Google Scholar 

  3. Bonn D: Maggot therapy: an alternative for wound infection. Lancet 2000;356:1174.

    Article  PubMed  CAS  Google Scholar 

  4. Bowles VM, Grey ST, Brandon MR: Cellular immune response in the skin of sheep infected wirh larvae of Lucilia cuprina, the sheep blowfly. Vet Parasitai 1992;44:151–162.

    Article  CAS  Google Scholar 

  5. Buchman J, Blair JE: Maggots and their use in the treatment of chronic osteomyelitis. Surg Gynecol Obstet 1932;55:177–190.

    Google Scholar 

  6. Cociancich S, Ghazi A, Hetru C, Hoffmann JA, Letellier L: Insect Defensin, an Inducible Antibacterial Peptide, Forms Voltage-dependent Channels in Micrococcus luteus. Journal of Biological Chemistry 1993; 268:19239–19245.

    PubMed  CAS  Google Scholar 

  7. Cunningham HH: Surgery and infections. In: Doctors in Gray. The Confederate Medical Service. Glouchester, MA, Peter Smith, 1970, pp 218–246.

    Google Scholar 

  8. Erdmann GR, Khalil SK: Isolation and identification of two antibacterial agents produced by a strain of proteus mirabilis isolated from larvae of the screwworm (Cochliomyia Hominivorax) (Diptera: Calliphoridae). J Med Entomol 1986;23:208–211.

    PubMed  CAS  Google Scholar 

  9. Fleischmann W, Russ M, Moch D, Marquardt Ch: Biochirurgie ’ sind Fliegenmaden wirklich die besseren Chirurgen? Chirurg 1999;70:1340–1346.

    Article  PubMed  CAS  Google Scholar 

  10. Fleischmann W, Grassberger M: Erfolgreiche Wundheilung durch Maden-Therapie. Stuttgart, Trias/Thieme, 2002.

    Google Scholar 

  11. Fraser A, Ring RA, Stewart RK: Intestinal proteinases in an insect, Calliphora vomitoria L. Nature 1961;192:999–1000.

    Article  PubMed  CAS  Google Scholar 

  12. Grassberger M, Heinrich M: Die Maggot therapy. Österreichische Apotheker Zeitung 1999;16:733–736.

    Google Scholar 

  13. Grassberger M, Reiter C: Effect of temperature on Lucilia sericata (Diptera: Calliphoridae) development with special reference to the isomegalen- and isomorphen-diagram. Forensic Sci Int 2001 ; 120:32–36.

    Article  PubMed  CAS  Google Scholar 

  14. Grassberger M, Fleischmann W: The Biobag — A new device for the application of medicinal maggots. Dermatology 2002, In press.

  15. Grassberger M: Ein historischer Rückblick auf den therapeutischen Einsatz von Fliegenmaden. NTM — International Journal of History and Ethics of Natural Sciences, Technology and Medicine 2002; 10:13–24.

    Article  CAS  Google Scholar 

  16. Greenberg B: Model for the destruction of bacteria in the midgut of blow fly maggots. J Med Entom 1968;5:31–38.

    CAS  Google Scholar 

  17. Greenberg B: Flies and Diseases. Volume II. Biology and disease transmission. Princeton (New Jersey), Princeton University Press, 1973.

    Google Scholar 

  18. Gwatkins R, Fallis AM: Bactericidal and antigenic qualities of the washings of blowfly maggots. Canadian Journal of Research 1938;16: 343–352.

    Google Scholar 

  19. Hobson RP: On an enzyme from blow-fly larvae (Lucilia sericata) which digests collagen in alkaline solution. Biochemistry 1931;25:1458–1463.

    CAS  Google Scholar 

  20. Hobson RP: Studies on the nutrition of blow-fly larvae. I. Structure and Function of the alimentary tract. J Exp Biol 1931;8:110–123.

    Google Scholar 

  21. Hobson RP: Studies on the nutrition of blow-fly larvae. II. Role of the intestinal flora in digestion. J Exp Biol 1932;9:128–138.

    CAS  Google Scholar 

  22. Hobson RP: Studies on the nutrition of blow-fly larvae. IV. The normal role of micro-organisms in larval growth. J Exp Biol 1932;9:366–377.

    CAS  Google Scholar 

  23. Hoffmann JA, Hetru C: Insect defensins: inducible antibacterial peptides. Immunology Today 1992;13:411–415.

    Article  PubMed  CAS  Google Scholar 

  24. Hoffmann JA: Innate immunity of insects. Curr Opinion in Immunology 1995;7:4–10.

    Article  CAS  Google Scholar 

  25. Larrey DJ: Observations on wounds and their complications by erysipelas, gangrene and tetanus etc. In: EF Rivinus: Clin Chir Transi. Paris, Philadelphia: Key, Mielke & Biddle, 1932, pp 51–52.

    Google Scholar 

  26. Lehane MJ, Wu D, Lehane SM: Midgut-specific immune molecules are produced by the blood-sucking insect Stomoxys calcitrans. Proc Natl Acad Sci USA 1997;94:11 502–11 507.

    Article  CAS  Google Scholar 

  27. Livingston SK, Prince LH: The treatment of chronic osteomyelitis with special reference to the use of maggot active principle. JAMA 1932; 98:1143–1149.

    Google Scholar 

  28. Livingston SK: The therapeutic active principle of maggots with a description of its clinical application in 567 cases. J Bone Joint Surg 1936; 18:751–756.

    Google Scholar 

  29. Livingston SK: Therapeutics of maggot active principle. Am J Surg 1937;35:554–556.

    Article  Google Scholar 

  30. Messer FC, McClellen RH: Surgical maggots. A study of their functions in wound healing. Journal of Laboratory and Clinical Medicine 1935;20:1219–1226.

    Google Scholar 

  31. Mumcuoglu KY, Miller J, Ioffe-Uspensky, Barak V: The potential of maggots to secrete cytokines in vitro. Vortrag im Rahmen der 5th international Conference on Biotherapy. Würzburg 29.6.-1.7.2000.

  32. Mumcuoglu KY, Miller J, Mumcuoglu M, Friger M, Tarshis M: Destruction of Bacteria in the Digestive Tract of the Maggot of Lucilia sericata (Diptera: Calliphoridae). J Med Entomol 2001;38:161–166.

    Article  PubMed  CAS  Google Scholar 

  33. Paré A: The battle of St. Quentin 1557. In: Keynes G (ed): The Apologie and Treatise of Ambroise Paré. Chicago, The University of Chicago Press, 1952, pp 68–70.

    Google Scholar 

  34. Pavillard ER, Wright EA: An antibiotic from maggots. Nature 1957;180:916–917.

    Article  PubMed  CAS  Google Scholar 

  35. Picado C: Sur le principe bactéricide des larves des mouches (Myiases des plaies et myiases des fruits). Bull Biol France Belgique 1935;69:409–438.

    Google Scholar 

  36. Prete PE: Growth effects of Phaenicia sericata larval extracts on fibroblasts: mechanism for wound healing by maggot therapy. Life Sci 1997;60:505–510.

    Article  PubMed  CAS  Google Scholar 

  37. Robinson W: The use of blowfly larvae in the treatment of infected wounds. Ann Entomol Soc Am 1933;26:270–276.

    Google Scholar 

  38. Robinson W, Norwood VH: Destruction of pyogenic bacteria in the alimentary tract of surgical maggots implanted in infected wounds. J Lab Clin Med 1934;19:581–586.

    Google Scholar 

  39. Robinson W: Stimulation of healing in non-healing wounds by allantoin occurring in maggot secretions and of wide biological distribution. J Bone Joint Surg 1935;17:267–271.

    Google Scholar 

  40. Robinson W: The healing properties of allantoin and urea discovered through the use of maggots in human wounds. Ann Rep Smithsonian Institution, Washington, DC, US Government Printing Office, 1938, pp 451–460.

    Google Scholar 

  41. Robinson W, Baker FC: The enzyme urease and occurrence of ammonia in maggot infected wounds. J Parasitai 1939;25:149–155.

    Article  Google Scholar 

  42. Robinson W: Ammonium bicarbonate secreted by surgical maggots stimulates healing in purulent wounds. Am J Surg 1940;47:111–115.

    Article  CAS  Google Scholar 

  43. Sherman RA, Tran J, Sullivan R: Maggot Therapy for treating Venous Stasis Ulcers. Arch Dermatol 1996;132:254–256.

    Article  PubMed  CAS  Google Scholar 

  44. Sherman RA, Hall MJR, Thomas S: Medicinal Maggots: An Ancient Remedy for Some Contemporary Afflictions. Annu Rev Entomol 2000;45: 55–81.

    Article  PubMed  CAS  Google Scholar 

  45. Simmons SW: A bactericidal principle in excretions of surgical maggots which destroys important etiological agents of pyogenic infections. J Bacteriology 1935;30:253–267.

    CAS  Google Scholar 

  46. Stewart MA: The role of Lucilia sericata Meig. larvae in osteomyelitis wounds. Ann Trop Med Parasit 1934;28:445.

    Google Scholar 

  47. Thomas S, Andrews AM, Hay NP, Bourgoise S: The anti-microbial activity of maggot secretions: results of a preliminary study. Journal of Tissue Viability 1999;9:127–132.

    PubMed  CAS  Google Scholar 

  48. Vistnes LM, Lee R, Ksander GA: Proteolytic activity of blowfly larvae secretions in experimental burns. Surgery 1981;90:835–841.

    PubMed  CAS  Google Scholar 

  49. Waterhouse DF, Irzykiewicz H: An examination of proteolytic enzymes from several insects for collagenase activity. J Insect Physiol 1957; 1:18–22.

    Article  CAS  Google Scholar 

  50. Wolff H, Hansson C: Larval Therapy for a Leg Ulcer with Methicillin-resistant Staphylococcus aureus. Acta Derm Venereol 1999;79:320–335.

    Article  PubMed  CAS  Google Scholar 

  51. Ziffren SE, Heist HE, May SC, Womack NA: The secretion of collagenase by maggots and its implication. Ann Surg 1953; 138:932–934.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Grassberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grassberger, M., Frank, C. Wundheilung durch sterile Fliegenlarven: mechanische, biochemische und mikrobiologische Grundlagen. WMW 153, 198–201 (2003). https://doi.org/10.1046/j.1563-258X.2003.02084.x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1046/j.1563-258X.2003.02084.x

Schlüsselwörter

Keywords

Navigation