Skip to main content

A bedside clinical prediction rule for detecting moderate or severe aortic stenosis

Abstract

OBJECTIVE: To evaluate a bedside clinical prediction rule for detecting moderate or severe aortic stenosis.

DESIGN: Cross-sectional study with independent comparison to a diagnostic reference standard, doppler echocardiography.

SETTING: Urban university hospital.

PARTICIPANTS: Consecutive hospital inpatients (n=124) who had been referred for echocardiography.

MEASUREMENTS AND MAIN RESULTS: Participants were examined by a third-year general internal medicine resident and a staff general internist. We hypothesized in advance that absence of a murmur over the right clavicle would rule out aortic stenosis, while the presence of three or four associated findings (slow carotid artery upstroke, reduced carotid artery volume, maximal murmur intensity at the second right intercostal space, and reduced intensity of the second heart sound) would rule in aortic stenosis. Study physicians were unaware of echocardiographic findings. The outcome was echocardiographic moderate or severe aortic stenosis, defined as a valve area of 1.2 cm2 or less, or a peak instantaneous gradient of 25 mm Hg or greater. Absence of a murmur over the right clavicle ruled out aortic stenosis (likelihood ratio [LR] 0.10; 95% confidence interval [CI] 0.01, 0.44). The presence of three or four associated findings ruled in aortic stenosis (LR 40; 95% CI 6.6, 240). If a murmur was present over the right clavicle, but no more than two associated findings were present, then the examination was indeterminate (LR 1.8; 95% CI 0.93, 2.9).

CONCLUSION: A clinical prediction rule, using simple bedside maneuvers, accurately ruled in and ruled out aortic stenosis.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Detsky AS, Abrams HB, McLaughlin JR, et al. Predicting cardiac complications in patients undergoing non-cardiac surgery. J Gen Intern Med. 1986;1:211–9.

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Roldan CA, Shively BK, Crawford MH. Value of the cardiovascular physical examination for detecting valvular heart disease in asymptomatic subjects. Am J Cardiol. 1996;77:1327–31.

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Etchells EE, Bell C, Robb KV. Does this patient have an abnormal systolic murmur? JAMA. 1997;277:564–71.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Hoagland PM, Cook EF, Wynne J, Goldman L. Value of noninvasive testing in adults with aortic stenosis. Am J Med. 1986;80:1041–50.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Paauw DS, Wenrich MD, Curtis JR, Carline JD, Ramsey PG. Ability of primary care physicians to recognize physical findings associated with HIV infection. JAMA. 1995;274:1380–2.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    McKillop GM, Stewart DA, Burns JMA, Ballantyne D. Doppler echocardiography in elderly patients with ejection systolic murmurs. Postgrad Med J. 1991;61:1059–61.

    Article  Google Scholar 

  7. 7.

    Feinstein AR, Kramer MS. Clinical biostatistics, LIII: the architecture of observer/method variability and other types of process research. Clin Pharmacol Ther. 1980;28:551–63.

    PubMed  CAS  Article  Google Scholar 

  8. 8.

    Spodick DH, Kerrigan AT, de la Paz LR, Shahamatpour A, Kino M. Clavicular auscultation. Preferential clavicular transmission and amplification of aortic murmurs. Chest. 1976;70:337–40.

    PubMed  CAS  Google Scholar 

  9. 9.

    Aronow WS, Kronzon I. Prevalence and severity of valvular aortic stenosis determined by Doppler echochardiography and its association with echocardiographic and electrocardiographic left ventricular hypertrophy and physical signs of aortic stenosis in elderly persons. Am J Cardiol. 1991;67:776–7.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Constant J. Bedside Cardiology. 3rd ed. Boston, Mass: Little, Brown and Company; 1985:38–9.

    Google Scholar 

  11. 11.

    Fleiss JL. Statistical Methods for Rates and Proportions. 2nd ed. Toronto, Ont: John Wiley and Sons; 1981:225–32.

    Google Scholar 

  12. 12.

    Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–74.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Centor RM. Estimating confidence intervals of likelihood ratios. Med Decis Making. 1992;12:229–33.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Leisenring W, Pepe MS, Longton G. A marginal regression modeling framework for evaluating medical diagnostic data. Stat Med. 1997;16:1263–81.

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Simel DL, Samsa GP, Matchar DB. Likelihood ratios with confidence: sample size estimation for diagnostic test studies. J Clin Epidemiol. 1991;44:763–70.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Taranta A, Spagnuolo M, Snyder R, Gerbarg DS, Hofler JJ. Auscultation of the heart by physicians and by computer. In: Data Acquisition and Processing in Biology and Medicine. New York, NY: McMillan Co; 1964;3:23–52.

    Google Scholar 

  17. 17.

    Raftery EB, Holland WW. Examination of the heart: an investigation into variation. Am J Epidemiol. 1967;85:438–44.

    PubMed  CAS  Google Scholar 

  18. 18.

    Jaeschke R, Guyatt G, Sackett DL. Users’ Guide to the Medical Literature, III: How to use an article about a diagnostic test, A: Are the results of the study valid? JAMA. 1994;271:389–91.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Lindroos M, Kupari M, Heikkila J, Tilvis R. Prevalence of aortic valve abnormalities in the elderly: an echocardiographic study of a random population sample. J Am Coll Cardiol. 1993;21:1220–5.

    PubMed  CAS  Article  Google Scholar 

  20. 20.

    Knight PV, Martin BJ, Ballantyne D. Echocardiographic diagnoses in elderly patients with systolic murmurs and cardiac disease. Age Ageing. 1986;15:169–73.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Xu M, McHaffie DJ. Nonspecific systolic murmurs: an audit of the clinical value of echocardiography. N Z Med J. 1993;106:54–6.

    PubMed  CAS  Google Scholar 

  22. 22.

    Forssell G, Jonasson R, Orinius E. Identifying severe aortic valvular stenosis by bedside examination. Acta Med Scand. 1985;218:397–400.

    PubMed  CAS  Article  Google Scholar 

  23. 23.

    Chun PKC, Dunn BE. Clinical clue of severe aortic stenosis. Simultaneous palpation of the carotid and apical impulses. Arch Intern Med. 1982;142:2284–8.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Rothman A, Goldberger AL. Aids to cardiac auscultation. Ann Intern Med. 1983;99:346–53.

    PubMed  CAS  Google Scholar 

  25. 25.

    Lembo NJ, Dell’Italia LJ, Crawford MH, O’Rourke RA. Bedside diagnosis of systolic murmurs. N Engl J Med. 1988;318:1572–8.

    PubMed  CAS  Google Scholar 

  26. 26.

    Eddleman EE, Frommeyer WB Jr, Lyle DP, Bancroft WH Jr, Turner ME Jr. Critical analysis of clinical factors in estimating severity of aortic stenosis. Am J Cardiol. 1973;31:687–95.

    PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Edward Etchells MD, MSc.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Etchells, E., Glenns, V., Shadowitz, S. et al. A bedside clinical prediction rule for detecting moderate or severe aortic stenosis. J GEN INTERN MED 13, 699–704 (1998). https://doi.org/10.1046/j.1525-1497.1998.00207.x

Download citation

Key words

  • physical examination
  • heart murmurs
  • reliability of results