Skip to main content

Sleep debt: Theoretical and empirical issues


The term ‘sleep debt’ is widely used to describe the effects of sleep loss. The construct of sleep debt, however, is poorly defined in the scientific literature. Cumulative build-up of sleep pressure appears to be a key feature of sleep debt. The concepts of ‘core sleep’ and ‘basal sleep need’ have been proposed to provide a theoretical framework, albeit without strong empirical basis. It has been hypothesized that adaptation to sleep debt may be possible over time, but experimental evidence for this hypothesis is ambiguous. Recent experiments using chronic sleep restriction have revealed significant effects of sleep debt on daytime sleep latency and behavioral alertness. In a series of strictly controlled laboratory studies, we found that sleep debt can lead to fundamentally different daytime responses, depending on whether homeostatic sleep pressure (as measured in the waking electroencephalogram (EEG)) or behavioral alertness (as measured with psychomotor vigilance lapses) is considered. This suggests the existence of an as yet unidentified regulatory mechanism of waking neurobehavioral function. To study the nature of this regulatory process under chronic sleep restriction, advantage can be taken of the natural variability in sleep need frequently cited in the literature. We also obtained evidence for interindividual differences in vulnerability to sleep loss regardless of sleep need. Statistical modeling of the effects of chronic sleep restriction on behavioral alertness, taking into account these interindividual differences, provided a reference for defining sleep debt. The results suggested that sleep debt may be defined as the cumulative hours of sleep loss with respect to a subject-specific daily need for sleep.

This is a preview of subscription content, access via your institution.


  1. 1

    Kleitman N. Sleep and Wakefulness, 2nd edn. Chicago: University of Chicago Press, 1963.

    Google Scholar 

  2. 2

    Dement WC, Vaughan C. The Promise of Sleep. New York: Dell Publishing, 1999.

    Google Scholar 

  3. 3

    Kryger MH, Roth T, Dement WC. Principles and Practice of Sleep Medicine, 3rd edn. Philadelphia: Saunders, 2000.

    Google Scholar 

  4. 4

    Carskadon MA. Encyclopedia of Sleep and Dreaming. New York: Macmillan Publishers, 1993.

    Google Scholar 

  5. 5

    Carskadon MA, Dement WC. Cumulative effects of sleep restriction on daytime sleepiness. Psychophysiology 1981; 18: 107–13.

    CAS  Article  PubMed  Google Scholar 

  6. 6

    Carskadon MA, Roth T. Sleep restriction. In: Monk TH, ed. Sleep, Sleepiness and Performance. Chichester: John Wiley & Sons, 1991; 155–67.

    Google Scholar 

  7. 7

    Dinges DF, Pack F, Williams K et al. Cumulative sleepiness, mood disturbance, and psychomotor vigilance performance decrements during a week of sleep restricted to 4–5 hours per night. Sleep 1997; 20: 267–77.

    CAS  PubMed  Google Scholar 

  8. 8

    Webb WB, Agnew HW Jr. The effects of a chronic limitation of sleep length. Psychophysiology 1974; 11: 265–74.

    CAS  Article  PubMed  Google Scholar 

  9. 9

    Friedmann J, Globus G, Huntley A, Mullaney D, Naitoh P, Johnson L. Performance and mood during and after gradual sleep reduction. Psychophysiology 1977; 14: 245–50.

    Article  Google Scholar 

  10. 10

    Horne JA, Wilkinson S. Chronic sleep reduction: Daytime vigilance performance and FFG measures of sleepiness, with particular reference to ‘practice’ effects. Psychophysiology 1985; 22: 69–78.

    CAS  Article  PubMed  Google Scholar 

  11. 11

    Blagrove M, Alexander C, Horne JA. The effects of chronic sleep reduction on the performance of cognitive tasks sensitive to sleep deprivation. Appl. Cogn. Psychology 1995; 9: 21–40.

    Article  Google Scholar 

  12. 12

    Pilcher JJ, Huffcutt AI. Fffects of sleep deprivation on performance: a meta-analysis. Sleep 1996; 19: 318–26.

    CAS  PubMed  Google Scholar 

  13. 13

    Spiegel K, Leproult R, Van Cauter F. Impact of sleep debt on metabolic and endocrine function. Lancet 1999; 354: 1435–9.

    CAS  Article  PubMed  Google Scholar 

  14. 14

    Rogers NL, Szuba MP, Staab JP, Fvans DL, Dinges DF. Neuroimmunologic aspects of sleep and sleep loss. Semin. Clin. Neuropsychiatry 2001; 6: 295–307.

    CAS  Article  PubMed  Google Scholar 

  15. 15

    Horne JA. Sleep function, with particular reference to sleep deprivation. Ann. Clin. Res. 1985; 17: 199–208.

    CAS  PubMed  Google Scholar 

  16. 16

    Horne JA. Why We Sleep. Oxford: Oxford University Press, 1988.

    Google Scholar 

  17. 17

    Borbély AA. A two-process model of sleep regulation. Hum. Neurobiol. 1982; 1: 195–204.

    PubMed  Google Scholar 

  18. 18

    Drake CL, Roehrs TA, Burduvali F, Bonahoom A, Rosekind M, Roth T. Effects of rapid versus slow accumulation of eight hours of sleep loss. Psychophysiology 2001; 38: 979–87.

    CAS  Article  PubMed  Google Scholar 

  19. 19

    Wehr TA, Moul DF, Barbato G et al. Conservation of photoperiod-responsive mechanisms in humans. Am. J. Physiol. 1993; 265: R846–57.

    CAS  PubMed  Google Scholar 

  20. 20

    Breslau N, Roth T, Rosenthal L, Andreski P. Daytime sleepiness: An epidemiological study of young adults. Am. J. Public Health 1997; 87: 1649–53.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21

    Jean-Louis G, Kripke DF, Ancoli-Israel S. Sleep and quality of well-being. Sleep 2000; 23: 1115–21.

    CAS  PubMed  Google Scholar 

  22. 22

    Kripke DF, Garfinkel L, Wingard DL, Klauber MR, Marler MR. Mortality associated with sleep duration and insomnia. Arch. Gen. Psychiatry 2002; 59: 131–6.

    Article  PubMed  Google Scholar 

  23. 23

    National Sleep Foundation. 2002 Sleep in America Poll. Washington DC: National Sleep Foundation, 2002.

    Google Scholar 

  24. 24

    Borbély AA, Achermann P. Sleep homeostasis and models of sleep regulation. J. Biol. Rhythms 1999; 14: 557–68.

    PubMed  Google Scholar 

  25. 25

    Borbély AA. From slow waves to sleep homeostasis: New perspectives. Arch. Ital. Biol. 2001; 139: 53–61.

    PubMed  Google Scholar 

  26. 26

    Dinges DF, Powell JW. Microcomputer analyses of performance on a portable, simple visual RT task during sustained operations. Behav. Res. Meth. Instr. Comp. 1985; 17: 652–5.

    Article  Google Scholar 

  27. 27

    Rechtschaffen A, Kales A. A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. Los Angeles: UCLA Brain Information Service, 1968.

    Google Scholar 

  28. 28

    Åkerstedt T, Gillberg M. Subjective and objective sleepiness in the active individual. Int. J. Neurosci. 1990; 52: 29–37.

    Article  PubMed  Google Scholar 

  29. 29

    Daan S, Beersma DGM, Borbély AA. Timing of human sleep: Recovery process gated by a circadian pacemaker. Am. J. Physiol. 1984; 246: R161–78.

    CAS  PubMed  Google Scholar 

  30. 30

    Folkard S, Åkerstedt T, Macdonald I, Tucker P, Spencer MB. Beyond the three-process model of alertness: Estimating phase, time on shift, and successive night effects. J. Biol. Rhythms 1999; 14: 577–87.

    CAS  Article  PubMed  Google Scholar 

  31. 31

    Jewett ME, Kronauer RE. Interactive mathematical models of subjective alertness and cognitive throughput in humans. J. Biol. Rhythms 1999; 14: 588–97.

    CAS  Article  PubMed  Google Scholar 

  32. 32

    Brunner DP, Dijk D-J, Borbély AA. Repeated partial sleep deprivation progressively changes the EEG during sleep and wakefulness. Sleep 1993; 16: 100–13.

    CAS  PubMed  Google Scholar 

  33. 33

    Finelli LA, Baumann H, Borbély AA, Achermann P. Dual electroencephalogram markers of human sleep homeostasis. Correlation between theta activity in waking and slow-wave activity in sleep. Neuroscience 2000; 101: 523–9.

    CAS  Article  PubMed  Google Scholar 

  34. 34

    Aeschbach D, Postolache TT, Sher L, Matthews JR, Jackson MA, Wehr TA. Evidence from the waking electroencephalogram that short sleepers live under higher homeostatic sleep pressure than long sleepers. Neuroscience 2001; 102: 493–502.

    CAS  Article  PubMed  Google Scholar 

  35. 35

    Heath AC, Eaves LJ, Kirk KM, Martin NG. Effects of lifestyle, personality, symptoms of anxiety and depression, and genetic predisposition on subjective sleep disturbance and sleep pattern. Twin Res. 1998; 1: 176–88.

    CAS  Article  PubMed  Google Scholar 

  36. 36

    Franken P, Chollet D, Tafti M. The homeostatic regulation of sleep need is under genetic control. J. Neurosci. 2001; 21: 2610–21.

    CAS  PubMed  Google Scholar 

  37. 37

    Monk TH, Buysse DJ, Welsh DK, Kennedy KS, Rose LR. A sleep diary and questionnaire study of naturally short sleepers. J. Sleep Res. 2001; 10: 173–9.

    CAS  Article  PubMed  Google Scholar 

  38. 38

    SAS Institute. SAS/STAT User’s Guide 8, 2nd Volume. Cary: SAS Institute, 1999.

    Google Scholar 

  39. 39

    Dinges DF, Achermann P. Future considerations for models of human neurobehavioral function. J. Biol. Rhythms 1999; 14: 598–601.

    CAS  Article  PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to David F. Dinges.

Additional information

We dedicate this paper to the memory of Dr Martin P Szuba.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Van Dongen, H.P.A., Rogers, N.L. & Dinges, D.F. Sleep debt: Theoretical and empirical issues. Sleep Biol. Rhythms 1, 5–13 (2003).

Download citation

Key words

  • behavioral alertness
  • chronic sleep restriction
  • cumulative deficits
  • sleep debt
  • sleep need