Skip to main content
Log in

Fine root biomass, production and turnover in a fertilized Larix leptolepis plantation in central Korea

  • Note and Comment
  • Published:
Ecological Research

The effects of fertilization [control (C), 200 kg N ha−1 + 25 kg P ha−1 (LNP) and 400 kg N ha−1 + 50 kg P ha−1 (HNP)] on fine root dynamics were examined in a 40-year-old Larix leptolepis plantation in central Korea. The average fine root biomass during the growing season for C, LNP and HNP was 957, 934 and 814 kg ha−1, respectively, whereas the fine root production for C, LNP and HNP was 2103, 2131 and 2066 kg ha−1, respectively. Nitrogen and P inputs into the soil via fine root turnover for C, LNP and HNP were 23.0 and 1.2, 23.3 and 1.2 and 22.6 and 1.2 kg ha−1, respectively. There were no significant differences in fine root biomass, production and N and P inputs through fine root turnover between the fertilization treatments during the first growing season after fertilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  • Aber J. D., Melillo J. M., Nadelhoffer K. J., McClaugherty C. A., Pastor J. (1985) Fine root turnover in forest ecosystems in relation to quantity and form of nitrogen availability: a comparison of two methods. Oecologia 66: 317–321.

    Google Scholar 

  • Alexander I. J. & Fairley R. I. (1983) Effects of N fertilisation on populations of fine roots and mycorrhizas in spruce humus. Plant and Soil 71: 49–53.

    Google Scholar 

  • Arthur M. A. & Fahey T. J. (1992) Biomass and nutrients in an Engelmann spruce-subalpine fir forest in north central Colorado: pools, annual production, and internal cycling. Canadian Journal of Forest Research 22: 315–325.

    Google Scholar 

  • Bloomfield J., Vogt K., Wargo P. M. (1996) Tree root turnover and senescence. In: Plant Roots: the Hidden Half (eds Y. Waisel, A. Eshel & U. Kafkafi) pp. 363–381. Marcel Dekker Inc, New York.

    Google Scholar 

  • Braekke F. H. (1992) Root biomass after drainage and fertilization of a low-shrub pine bog. Plant and Soil 143: 33–43.

    Google Scholar 

  • Burke M. K. & Raynal D. J. (1994) Fine root growth phenology, production, and turnover in a northern hardwood forest ecosystem. Plant and Soil 162: 135–146.

    Google Scholar 

  • Cairns M. A., Brown S., Helmer E. H., Baumgardner G. A. (1997) Root biomass allocation in the world’s upland forests. Oecologia 111: 1–11.

    Article  Google Scholar 

  • Clemensson-Lindell A. & Persson H. (1995) The effects of nitrogen addition and removal on Norway spruce fine-root vitality and distribution in three catchment areas at Gardsjon. Forest Ecology and Management 71: 123–131.

    Google Scholar 

  • Dress W. J. & Boerner R. E. J. (2001) Root dynamics of southern Ohio oak-hickory forests: influences of prescribed fire and landscape position. Canadian Journal of Forest Research 31: 644–653.

    Google Scholar 

  • Fairley R. I. & Alexander I. J. (1985) Methods of calculating fine root production in forests. In: Ecological Interactions in the Soil, pp. 37–41. Special Publication No. 4 of the British Ecological Society, London.

    Google Scholar 

  • Fogel R. (1983) Root turnover and productivity of coniferous forests. Plant and Soil 71: 75–85.

    Google Scholar 

  • Fredericksen T. S. & Zedaker S. M. (1995) Fine root biomass, distribution, and production in young pine-hardwood stands. New Forests 10: 99–110.

    Google Scholar 

  • Friend A. L., Eide M. R., Hinckley T. M. (1990) Nitrogen stress alters root proliferation in Douglas-fir seedlings. Canadian Journal of Forest Research 20: 1524–1529.

    Google Scholar 

  • Gordon W. S. & Jackson R. B. (2000) Nutrient concentrations in fine roots. Ecology 81: 275–280.

    Google Scholar 

  • Gower S. T. & Vitousek P. M. (1989) Effects of nutrient amendments on fine root biomass in a primary successional forest in Hawai’i. Oecologia 81: 566–568.

    Google Scholar 

  • Gower S. T., Vogt K. A., Grier C. C. (1992) Carbon dynamics of Rocky Mountain Douglas-fir: influence of water and nutrient availability. Ecological Monographs 62: 43–65.

    Google Scholar 

  • Helmisaari H-S. (1991) Variation in nutrient concentrations of Pinus sylvestris roots. In: Plant Roots and Their Environments (eds B. L. McMichael & H. Persson) pp. 204–212. Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  • Helmisaari H-S. & Hallbacken L. (1999) Fine-root and necromass in limed and fertilized Norway spruce (Picea abies (L.) Karst.) stands. Forest Ecology and Management 119: 99–110.

    Google Scholar 

  • Hendrick R. L. & Pregitzer K. S. (1993) The dynamics of fine root length, biomass, and nitrogen content in two northern hardwood ecosystems. Canadian Journal of Forest Research 23: 2507–2520.

    Google Scholar 

  • Hendrick R. L. & Pregitzer K. S. (1996) Applications of minirhizotrons to understand root function in forests and other natural ecosystems. Plant and Soil 185: 293–304.

    Google Scholar 

  • Hendricks J. J., Nadelhoffer K. J., Aber J. D. (1993) Assessing the role of fine roots in carbon and nutrient cycling. TREE 8: 174–178.

    Google Scholar 

  • Ingestad T. & Agren G. I. (1991) The influence of plant nutrition on biomass allocation. Ecological Applications 1: 168–174.

    Google Scholar 

  • Jackson R. B., Canadell J., Ehleringer J. R., Mooney H. A., Sala O. E., Schulze E. D. (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108: 389–411.

    Article  Google Scholar 

  • Jackson R. B., Mooney H. A., Schulze E. D. (1997) A global budget for fine root biomass, surface area, and nutrient contents. Proceedings of the National Academy of Science 94: 7362–7366.

    Google Scholar 

  • Jones H. E., Hogberg P., Ohlsson H. (1994) Nutritional assessment of a forest fertilization experiment in northern Sweden by root assays. Forest Ecology and Management 64: 59–69.

    Google Scholar 

  • Keyes M. R. & Grier C. C. (1981) Above- and below-ground net production in 40-year-old Douglas-fir stands on low and high productivity sites. Canadian Journal of Forest Research 11: 599–605.

    Google Scholar 

  • Kim J. S., Son Y., Lim J. H., Kim Z. S. (1996) Aboveground biomass, N and P distribution, and litterfall in Pinus rigida and Larix leptolepis plantations. Journal of Korean Forestry Society 85: 416–425 (in Korean with English abstract).

    Google Scholar 

  • Korea Forest Service (2000) Forest and Forestry Technique II. Forest Establishment. Korea Forest Service, Korea (in Korean).

    Google Scholar 

  • Majdi H. (1996) Root sampling methods – applications and limitations of the minirhizotron technique. Plant and Soil 185: 255–258.

    Google Scholar 

  • Majdi H. (2001) Changes in fine root production and longevity in relation to water and nutrient availability in a Norway spruce stand in northern Sweden. Tree Physiology 21: 1057–1061.

    Google Scholar 

  • Majdi H. & Nylund J-E. (1996) Does liquid fertilization affect fine root dynamics and lifespan of mycorrhizal short roots? Plant and Soil 185: 305–309.

    Google Scholar 

  • Makkonen K. & Helmisaari H-S. (1998) Seasonal and yearly variations of fine-root biomass and necromass in a Scots pine (Pinus sylvestris L.) stand. Forest Ecology and Management 102: 283–290.

    Google Scholar 

  • Makkonen K. & Helmisaari H-S. (1999) Assessing fine-root biomass and production in a Scots pine stand–comparison of soil core and root ingrowth core methods. Plant and Soil 210: 43–50.

    Google Scholar 

  • Makkonen K. & Helmisaari H-S. (2001) Fine root biomass and production in Scots pine stands in relation to stand age. Tree Physiology 21: 193–198.

    Google Scholar 

  • McClaugherty C. A., Aber J. D., Melillo J. M. (1982) The role of fine roots in the organic matter and nitrogen budgets of two forested ecosystems. Ecology 63: 1481–1490.

    Google Scholar 

  • Meier C. E., Grier C. C., Cole D. W. (1985) Below- and aboveground N and P use by Abies amabilis stands. Ecology 66: 1928–1942.

    Google Scholar 

  • Nadelhoffer K. J., Aber J. D., Melillo J. M. (1985) Fine roots, net primary production, and soil nitrogen availability: a new hypothesis. Ecology 66: 1377–1390.

    Google Scholar 

  • Nadelhoffer K. J. & Raich J. W. (1992) Fine root production and belowground carbon allocation in forest ecosystems. Ecology 73: 1139–1147.

    Google Scholar 

  • Olsthoorn A. F. M., Keltjens W. G., Van Baren B., Hopman M. C. G. (1991) Influence of ammonium on fine root development and rhizosphere pH of Douglas-fir seedlings in sand. Plant and Soil 133: 75–81.

    Google Scholar 

  • Persson H., Ahlstrom K., Clemensson-Lindell A. (1998) Nitrogen addition and removal at Gardsjon–effects on fine-root growth and fine-root chemistry. Forest Ecology and Management 101: 199–205.

    Google Scholar 

  • Pregitzer K. S., Zak D. R., Curtis P. S., Kubiske M. E., Teeri J. A., Vogel C. S. (1995) Atmospheric CO2, soil nitrogen and turnover of fine roots. Phytologist 129: 579–585.

    Google Scholar 

  • Raich J. W. & Nadelholffer K. J. (1989) Belowground carbon allocation in forest ecosystem: global trends. Ecology 70: 1346–1354.

    Google Scholar 

  • Ruess R. W., Van Cleve K., Yarie J., Viereck L. A. (1996) Contribution of fine root production and turnover to the carbon and nitrogen cycling in taiga forests of the Alaskan interior. Canadian Journal of Forest Research 26: 1326–1336.

    Google Scholar 

  • Rytter R-M. & Rytter L. (1998) Growth, decay, and turnover rates of fine roots of basket willows. Canadian Journal of Forest Research 28: 893–902.

    Google Scholar 

  • Santantonio D. & Hermann R. K. (1985) Standing crop, production, and turnover of fine roots on dry, moderate and wet sites of mature Douglas-fir in western Oregon. Annales des Sciences Forestieres 42: 113–142.

    Google Scholar 

  • SAS (1988) SAS/STAT User’s Guide. 6.03 Edition. SAS Institute, Cray.

    Google Scholar 

  • Schilling E. B., Lockaby B. G., Rummer R. (1999) Belowground nutrient dynamics following three harvest intensities on the Pearl River Floodplain, Mississippi. Soil Science Society of America Journal 63: 1856–1868.

    Google Scholar 

  • Son Y. & Kim H. W. (1996) Soil respiration in Pinus rigida and Larix leptolepis plantations. Journal of Korean Forestry Society 85: 496–505 (in Korean with English abstract).

    Google Scholar 

  • Son Y. & Lee I. K. (1997) Soil nitrogen mineralization in adjacent stands of larch, pine and oak in central Korea. Annales des Sciences Forestieres 54: 1–8.

    Google Scholar 

  • Son Y., Lee W. K., Lee S. E., Ryu S. R. (1999) Effects of thinning on soil nitrogen mineralization in a Japanese larch plantation. Communications in Soil Science and Plant Analysis 30: 2539–2550.

    Google Scholar 

  • Son Y., Lee I. K., Ryu S. R. (2000) Nitrogen and phosphorus dynamics in foliage and twig of pitch pine and Japanese larch plantations in relation to fertilization. Journal of Plant Nutrition 23: 697–710.

    Google Scholar 

  • Stevenson M. J. & Day F. P. (1996) Fine-root biomass distribution and production along a barrier island chronosequence. The American Midland Naturalist 135: 205–217.

    Google Scholar 

  • Takei F. (1995) Distribution and management of Japanese larch. In: Ecology and Management of Larix Forests: A Look Ahead, pp. 58–65. USDA Forest Service General Technical Report GTR-INT-319.

  • Vanninen P. & Makela A. (1999) Fine root biomass of Scots pine stands differing in age and soil fertility in southern Finland. Tree Physiology 19: 823–830.

    Google Scholar 

  • Vogt K. A. (1991) Carbon budgets of temperate forest ecosystems. Tree Physiology 9: 69–86.

    PubMed  Google Scholar 

  • Vogt K. A., Edmonds R. L., Grier C. C. (1981) Seasonal changes in biomass and vertical distribution of mycorrhizal and fibrous textured conifer fine roots in 23- and 180-year-old subalpine Abies amabilis stands. Canadian Journal of Forest Research 11: 223–229.

    Google Scholar 

  • Vogt K. A., Grier C. C., Vogt D. J. (1986) Production, turnover, and nutritional dynamics of above- and below-ground detritus of world forests. Advances in Ecological Research 15: 303–377.

    Google Scholar 

  • Vogt K. A., Moore E. E., Vogt D. J., Redlin M. J., Edmonds R. L. (1983) Conifer fine root and mycorrizal root biomass within the forest floors of Douglas-fir stands of different ages and site productivities. Canadian Journal of Forest Research 13: 429–437.

    Google Scholar 

  • Vogt K. A. & Persson H. (1991) Measuring growth and development of roots. In: Techniques and Approaches in Forest Tree Physiology (eds J. P. Lassoie & T. M. Hinkley) pp. 477–501. CRC Press, Boca Raton.

    Google Scholar 

  • Vogt K. A., Vogt D. J., Palmiotto P. A., Boon P., O’Hara J., Asbjornsen H. (1996) Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant and Soil 187: 159–219.

    Google Scholar 

  • Yin X., Perry J. A., Dixon R. K. (1991) Temporal changes in nutrient concentrations and contents of fine roots in a Quercus forest. Forest Ecology and Management 44: 175–184.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yowhan Son.

About this article

Cite this article

Son, Y., Hwang, J. Fine root biomass, production and turnover in a fertilized Larix leptolepis plantation in central Korea. Ecol Res 18, 339–346 (2003). https://doi.org/10.1046/j.1440-1703.2003.00559.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1046/j.1440-1703.2003.00559.x

Key words

Navigation