Skip to main content
Log in

Seasonal subsidy stabilizes food web dynamics: Balance in a heterogeneous landscape

  • Original Article
  • Published:
Ecological Research

Resource subsidies from external habitats can substantially affect the food web dynamics of local habitats. In this paper, we explore a mathematical model that is tailored for a stream food web, studied by Nakano and colleagues, in which consumers, in situ prey and subsidies all show seasonal fluctuation. The model reveals that the food web dynamics are stabilized if subsidies increase in summer when in situ productivity is low. Consumer dynamics are stabilized because subsidies complement seasonal resource deficiency. In situ prey dynamics are stabilized because subsidies indirectly balance the predation pressure by consumers, with seasonal change in prey carrying capacity. In summer when prey carrying capacity is low, seasonally abundant subsidies indirectly decrease predation pressure, whereas in winter, with high prey carrying capacity, scarce subsidies increase the predation pressure. Our results suggest that temporal productivity differences between spatially linked habitats are important to promote the stability of food web dynamics in a landscape context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Bastow J., Sabo J. L., Finlay J. C. & Power M. E. (2002) The effects of river derived algal and water resources on the spatial distribution of riparian pygmy grasshoppers. Oecologia (on-line) http://link.springer.de/link/service/journals/00442/contents/02/00879/paper/s00442-002-0879-7ch000.html

  • Bustamante R. G., Branch G. M. & Eekhout S. (1995) Maintenance of an exceptional grazer biomass in South Africa: subsidy by subtidal kelps. Ecology 76: 2314–2329.

    Google Scholar 

  • DeAngelis D. L. & Waterhouse J. C. (1987) Equilibrium and nonequilibrium concepts in ecological models. Ecological Monographs 57: 1–21.

    Google Scholar 

  • Duggins D. O., Simenstad C. A. & Estes J. A. (1989) Magnification of secondary production by kelp detritus in coastal marine ecosystems. Science 245: 170–173.

    Google Scholar 

  • Ferguson N. M., May R. M. & Anderson R. M. (1997) Measles: persistence and synchronicity in disease dynamics. In: Spatial Ecology: the Roles of Space in Population Dynamics and Interspecific Interactions (eds D. Tilman & P. Kareiva) pp. 137–157. Princeton University Press, Princeton.

    Google Scholar 

  • Hassel M. P. & Wilson H. B. (1997) The dynamics of spatially distributed host-parasitoid systems. In: Spatial Ecology: the Roles of Space in Population Dynamics and Interspecific Interactions (eds D. Tilman & P. Kareiva) pp. 75–110. Princeton University Press, Princeton.

    Google Scholar 

  • Hori M. & Noda T. (2001) Spatio-temporal variation of avian foraging in the rocky intertidal food web. Journal of Animal Ecology 70: 122–137.

    Article  Google Scholar 

  • Huxel G. R. & McCann K. (1998) Food web stability: the influence of trophic flows across habitats. American Naturalist 152: 460–469.

    Article  Google Scholar 

  • Jackson J. K. & Fisher S. G. (1986) Secondary production, emergence and export of aquatic insects of a Sonoran stream. Ecology 67: 629–638.

    Google Scholar 

  • Kawaguchi Y. & Nakano S. (2001) Contribution of terrestrial invertebrates to the annual resource budget for salmonids in forest and grassland reaches of a headwater stream. Freshwater Biology 46: 303–316.

    Article  Google Scholar 

  • Mason C. F. & MacDonald S. M. (1982) The input of terrestrial invertebrates from tree canopies to a stream. Freshwater Biology 12: 305–311.

    Google Scholar 

  • McCann K., Hastings A. & Huxel G. R. (1998) Weak trophic interactions and the balance of nature. Nature 395: 794–798.

    Article  CAS  Google Scholar 

  • McCann K. & Yodzis P. (1994) Biological conditions for chaos in a three-species food chain. Ecology 75: 561–564.

    Google Scholar 

  • McCann K. & Yodzis P. (1995) Bifurcation structure of a three-species food chain model. Theoretical Population Biology 48: 93–125.

    Article  Google Scholar 

  • Menge B. A., Daley B. A., Wheeler P. A., Dahlhoff E., Sanford E. & Sturb P. T. (1997) Benthic-pelagic links and rocky intertidal communities: Bottom-up effects on top-down control?Proceedings of the National Academy of Science of the United States of America 94: 14530–14535.

    Article  Google Scholar 

  • Murakami M. & Nakano S. Indirect effect of aquatic insect emergence on terrestrial herbivore population through bird predation. Ecology Letters (in press).

  • Nakano S., Miyasaka H. & Kuhara N. (1999) Terrestrial-aquatic linkages: riparian arthropod inputs alter trophic cascades in a stream food web. Ecology 80: 2435–2441.

    Google Scholar 

  • Nakano S. & Murakami M. (2001) Reciprocal subsidies: dynamic interdependence between terrestrial and aquatic food webs. Proceedings of the National Academy of Sciences of the United States of America 98: 166–170.

    Article  Google Scholar 

  • Polis G. A., Anderson W. B. & Holt R. D. (1997) Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annual Review of Ecology and Systematics 28: 289–316.

    Article  Google Scholar 

  • Polis G. A. & Hurd S. D. (1995) Extraordinary high spider densities on islands: flow of energy from the marine to terrestrial food webs and the absence of predation. Proceedings of the National Academy of Sciences of the United States of America 92: 4382–4386.

    Google Scholar 

  • Polis G. A. & Hurd S. D. (1996a) Allochthonous input across habitats, subsidized consumers, and apparent trophic cascades: examples from the ocean–land interface. In: Food Webs: Integration of Patterns and Dynamics (eds G. A. Polis & K. O. Winemiller) pp. 275–285. Chapman & Hall, New York.

    Google Scholar 

  • Polis G. A. & Hurd S. D. (1996b) Linking marine and terrestrial food webs: allochthonous input from the ocean supports high secondary productivity on small islands and coastal land communities. American Naturalist 147: 396–423.

    Article  Google Scholar 

  • Polis G. A. & Strong D. R. (1996) Food web complexity and community dynamics. American Naturalist 147: 813–846.

    Article  Google Scholar 

  • Post D. M., Conners M. E. & Goldberg D. S. (2000) Prey preference by a top predator and the stability of linked food chains. Ecology 81: 8–14.

    Google Scholar 

  • Post D. M., Taylor J. P., Kithell J. F., Olson M. H., Schindler D. E. & Herwig B. R. (1998) The role of migratory waterfowl as nutrient vectors in a managed wetland. Conservation Biology 12: 910–920.

    Article  Google Scholar 

  • Power M. E., Parker G., Dietrich W. E. & Sun A. (1995b) How does floodplain width affect floodplain river ecology? a preliminary exploration using simulations. Geomorphology 13: 301–317.

    Article  Google Scholar 

  • Power M. E. & Rainey W. E. (2000) Food webs and resource sheds: Towards spatially delimiting trophic interactions. In: Ecological Consequences of Habitat Heterogeneity (eds M. J. Hutchings & E. A. John) pp. 291–314. Blackwell Scientific, London.

    Google Scholar 

  • Power M. E., Sun A., Parker G., Dietrich W. E. & Wootton J. T. (1995a) Hydraulic food-chain models. BioScience 45: 159–167.

    Google Scholar 

  • Rose M. & Polis G. A. (1998) The distribution and abundance of coyotes: the effects of allochthonous food subsidies from the sea. Ecology 79: 998–1007.

    Google Scholar 

  • Sabo J. L. & Power M. E. River-watershed exchange: effects of riverine subsidies on riparian lizards and their terrestrial prey. Ecology (in press a).

  • Sabo J. L. & Power M. E. Aggregation of lizards in near-river habitats: Aquatic resource tracking and short-term indirect effects on in situ resources. Ecology (in press b).

  • Sánchez-Piñero F. & Polis G. A. (2000) Bottom-up dynamics of allochthonous input: direct and indirect effects of seabirds on islands. Ecology 81: 3117–3132.

    Google Scholar 

  • Yodzis P. & Innes S. (1992) Body size and consumer-resource dynamics. American Naturalist 139: 1151–1175.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaku Takimoto.

About this article

Cite this article

Takimoto, G., Iwata, T. & Murakami, M. Seasonal subsidy stabilizes food web dynamics: Balance in a heterogeneous landscape. Ecol Res 17, 433–439 (2002). https://doi.org/10.1046/j.1440-1703.2002.00502.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1046/j.1440-1703.2002.00502.x

Key words

Navigation