Skip to main content

Local neighborhood effects on long-term survival of individual trees in a neotropical forest

The survival of approximately 235 000 individual tropical trees and saplings in the 50 ha permanent plot on Barro Colorado Island (BCI), Panama was analyzed over a 13-year interval (1982–1995) as a function of four biotic neighborhood variables: (i) total stem density; (ii) conspecific density; (iii) relative plant size; and (iv) relative species richness. These neighborhood variables were measured in annular rings of width 2.5 m, extending 30 m from a given focal plant, and in one more distant annulus at 47.5–50 m. Because survival was spatially autocorrelated, a Gibbs sampler and a Monte Carlo Markov chain method were used for fitting an autologistic regression model to obtain unbiased estimates of parameter variances for hypothesis testing. After pooling all species at the community level, results showed that all four variables had significant and often strong effects on focal plant survival. Three of the four variables had negative effects on focal plant survival; relative plant size was the only variable with a positive effect (18% increase in the survival odds ratio). The variables with a negative effect on the survival odds ratio, in order of their effect strength in the nearest annulus, were: stem density (a 70% reduction in the survival odds ratio), conspecific density (50% reduction) and species richness (13% reduction). A guild-level analysis revealed considerable heterogeneity among guilds in their responses to these variables. For example, survival of gap species showed a much larger positive response to relative plant size than did survival of shade-tolerant species. Survival of shrub species was positively affected by conspecific density, but canopy tree survival was negatively affected. Conspecific density negatively affected survival of rare species much more strongly than survival of common species. The neighborhood effects of conspecific density disappear within approximately 12–15 m of the focal plant. Although locally strong, the rapid spatial decay of these effects raises unanswered questions about their quantitative contribution to the maintenance of tree diversity on landscape scales in the BCI forest.

This is a preview of subscription content, access via your institution.

References

  • Besag J. E. (1974) Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society B36: 192–255.

    Google Scholar 

  • Botkin D. B. (1991). Forest Dynamics: An Ecological Model. Oxford University Press, Oxford.

    Google Scholar 

  • Chave J., Muller-Landau H. C. & Levin S. A. (In press) Comparing classical community models: Theoretical consequences for patterns of diversity. American Naturalist

  • Condit R. (1998). Tropical Forest Census Plots. Springer-Verlag, New York.

    Google Scholar 

  • Condit R., Ashton P. S., Baker P., Bunyavejohewin S., Gunatileke S., Gunatilleke N., Hubbell S. P., Foster R. B., Itoh A., Lafrankie J. V., Lee H. S., Losos E., Manokaran N., Sukumar R. & Yamakura T. (2000) Spatial patterns in the distribution of tropical tree species. Science 288: 1414–1418.

    Article  CAS  PubMed  Google Scholar 

  • Condit R., Hubbell S. P., Lafrankie J. V., Sukumar R., Manokaran N., Foster R. B. & Ashton P. S. (1996) Species–area and species–individual relationships for tropical trees: A comparison of three 50-ha plots. Journal of Ecology 84: 549–562.

    Google Scholar 

  • Connell J. H. (1978) On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In: Dynamics of Populations. (eds P. J. den Boer & G. R. Gradwell) pp. 298–312. Centre for Agricultural Publishing and Documentation, Wageningen, The Netherlands.

    Google Scholar 

  • Cressie N. A. C. (1993). Statistics for Spatial Data. Wiley Interscience, New York.

    Google Scholar 

  • Croat T. (1978). The Flora of Barro Colorado Island. Stanford University Press, Palo Alto, CA.

    Google Scholar 

  • Denslow J. S. (1980) Gap partitioning among tropical rainforest trees. Biotropica 12: (Suppl.): S47–S55.

    Google Scholar 

  • Diamond J. (1986) Overview: Laboratory experiments, field experiments, and natural experiments. In: Community Ecology. (eds J. Diamond & T. J. Case) pp. 3–22. Harper & Row, New York.

    Google Scholar 

  • Geman S. & Geman D. (1984) Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6: 721–741.

    Google Scholar 

  • Geyer C. J. & Thompson E. A. (1992) Constrained Monte Carlo maximum likelihood for dependent data. Journal of the Royal Statistical Society B54: 657–699.

    Google Scholar 

  • Harms K. E., Wright S. J., Calderon O., Hernandez A. & Herre E. A. (2000) Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest. Nature 404: 493–495.

    Article  CAS  PubMed  Google Scholar 

  • Hartshorn G. S. (1978) Treefalls and tropical forest dynamics. In: Tropical Trees as Living Systems. (eds P. B. Tomlinson & M. H. Zimmerman) pp. 617–628. Cambridge University Press, Cambridge.

    Google Scholar 

  • Horn H. S. (1971). The Adaptive Geometry of Trees. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Horn H. S. (1975) Markovian properties of forest succession. In: Ecology and Evolution of Communities. (eds M. L. Cody & J. M. Diamond) pp. 196–211. Belnap Press, Harvard University, Cambridge, MA.

    Google Scholar 

  • Hubbell S. P. (1998) The maintenance of diversity in a neotropical tree community: Conceptual issues, current evidence, and the challenges ahead. In: Forest Biodiversity, Research, Monitoring and Modeling. Man and the Biosphere Series, Vol. 20. (eds F. Dallmeier & J. A. Comiskey) pp. 17–44. UNESCO and Parthenon Publishing, Paris.

    Google Scholar 

  • Hubbell S. P. (1999) Tropical tree species richness and resource-based niches. Science 285: 554–557.

    Google Scholar 

  • Hubbell S. P. (2001). The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Hubbell S. P., Ahumada J., Condit R. & Foster R. B. (In press) Long-term tree survival in a neotropical forest: The influence of local biotic neighborhood. In: Research in the 50 Ha Forest Dynamics Plots. (eds E. Losos & E. G. Leigh, Jr). University of Chicago Press, Chicago.

  • Hubbell S. P. & Foster R. B. (1983) Diversity of canopy trees in a neotropical forest and implications for the conservation of tropical trees. In: Tropical Rain Forest: Ecology and Management. (eds S. J. Sutton, T. C. Whitmore & A. C. Chadwick) pp. 25–41. Blackwell, Oxford.

    Google Scholar 

  • Hubbell S. P., Foster R. B., O’Brien S., Wechsler B., Condit R., Harms K. E., Wright S. J. & de Loo Lau S. (1999) Light gaps, recruitment limitation and tree diversity in a neotropical forest. Science 283: 554–557.

    Article  CAS  PubMed  Google Scholar 

  • Huffer F. W. & Wu H. (1998) Markov chain Monte Carlo for autologistic regression models with application to the distribution of plant species. Biometrics 54: 509–524.

    Google Scholar 

  • Ihaka R. & Gentleman R. (1996) R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics 5: 299–314.

    Google Scholar 

  • Janzen D. H. (1970) Herbivores and the number of tree species in tropical forests. American Naturalist 104: 501–528.

    Google Scholar 

  • Muller-Landau H. C., Dalling J. W., Harms K. E., Wright S. J., Condit R., Hubbell S. P. & Foster R. B. (In press) Janzen-Connell effects upon seed and seedling mortality: Disentangling the effects of dispersal patterns, habitat preferences and density dependence. In: Research in the 50 Ha Forest Dynamics Plots. (eds E. Losos & E. G. Leigh Jr). University of Chicago Press, Chicago.

  • O’Brien S. T., Hubbell S. P., Spiro P., Condit R. & Foster R. B. (1995) Diameter, height, crown, and age relationships in eight neotropical tree species. Ecology 76: 1926–1939.

    Google Scholar 

  • Pacala S. W., Canham C. D., Saponara J., SilanderJr J. A., Kobe R. K. & Ribbens E. (1996) Forest models defined by field measurements: Error analysis and dynamics. Ecological Monographs 66: 1–43.

    Google Scholar 

  • Pacala S. W. & Silander Jr J. A. (1990) Field tests of neighborhood population dynamic models of two annual week species. Ecological Monographs 60: 133–134.

    Google Scholar 

  • Packer A. & Clay K. (2000) Soil pathogens and spatial patterns of seedling mortality in a temperate tree. Nature 404: 278–281.

    Article  CAS  PubMed  Google Scholar 

  • Piperno D. (1992) Fitolitos, arqueología, y coambios prehistóricos de la vegetacion de un lote de cincuenta hectáreas de la Isla de Barro Colorado. In: Ecología de Im Bosque Tropical: Ciclos Estacionales Y Cambios de Largo Plazo. (eds E. G. Leigh, A. S. Rand, Jr & D. M. Windsor) pp. 153–156. Smithsonian Institution Press, Washington, D. C.

    Google Scholar 

  • Press W. H., Teukolsky S. A., Vetterling W. T. & Flannery B. P. (1992) Numerical Recipes in C, 2nd edn. Cambridge University Press, Cambridge.

    Google Scholar 

  • Shugart H. H. (1984) A Theory of Forest Dynamics. Springer-Verlag, New York.

    Google Scholar 

  • Weiner J. (1990) Asymmetric competition in plant populations. Trends in Ecology and Evolution 5: 360–364.

    Google Scholar 

  • Welden C. W., Hewett S. W., Hubbell S. P. & Foster R. B. (1991) Sapling survival, growth and recruitment: Relationship to canopy height in a neotropical forest. Ecology 72: 35– 50.

    Google Scholar 

  • Wills C., Condit R., Foster R. B. & Hubbell S. P. (1997) Strong density- and diversity-related effects help to maintain tree species diversity in a neotropical forest. Proceedings of the National Academy of Sciences of the United States of America 94: 1252–1257.

    Google Scholar 

  • Wright S. J. C., Korine C., Condit R., Harms K. E., Muller-Landau H., Garcia M., Yavitt J. B., Hubbell S. P. & Foster R. B. (In press) Life histories and size distributions of tropical trees. American Naturalist.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge A. Ahumada.

About this article

Cite this article

Hubbell, S., Ahumada, J., Condit, R. et al. Local neighborhood effects on long-term survival of individual trees in a neotropical forest. Ecol Res 16, 859–875 (2001). https://doi.org/10.1046/j.1440-1703.2001.00445.x

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1046/j.1440-1703.2001.00445.x

Key words

  • autologistic regression
  • Barro Colorado Island
  • Panama
  • survival
  • tropical forests