Skip to main content
Log in

The color of noise and the evolution of dispersal

  • Note and Comment
  • Published:
Ecological Research

The process of dispersal is vital for the long-term persistence of all species and hence is a ubiquitous characteristic of living organisms. A present challenge is to increase our understanding of the factors that govern the dispersal rate of individuals. Here I extend previous work by incorporating both spatial and temporal heterogeneity in terms of patch quality into a spatially explicit lattice model. The spatial heterogeneity is modeled as a two-dimensional fractal landscape, while temporal heterogeneity is included by using one-dimensional noise. It was found that the color of both the spatial and temporal variability influences the rate of dispersal selected as reddening of the temporal noise leads to a reduction in dispersal, while reddening of spatial variability results in an increase in the dispersal rate. These results demonstrate that the color of environmental noise should be considered in future studies looking at the evolution of life history characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  • Addison P. S. (1997) Fractals and Chaos. An Illustrated Course. Institute of Physics Publishing, Bristol.

    Google Scholar 

  • Comins H. N. (1982) Evolutionary stable dispersal strategies for localized dispersal in two dimensions. Journal of Theoretical Biology 94: 579–606.

    Google Scholar 

  • Comins H. N., Hamilton W. D. & May R. M. (1980) Evolutionary stable dispersal strategies. Journal of Theoretical Biology 82: 205–230.

    Google Scholar 

  • Dieckmann U., O’Hara B. & Weisser W. (1999) The evolutionary ecology of dispersal.◊Trends in Ecology and Evolution 14: 88–90.

    Google Scholar 

  • Doebeli M. & Ruxton G. D. (1997) Evolution of dispersal in metapopulation models: Branching and cyclic dynamics in phenotype space. Evolution 51: 1730–1741.

    Google Scholar 

  • Ezoe H. & Iwasa Y. (1997) Evolution of condition-dependent dispersal: A genetic algorithm search for the ESS reaction norm. Researches in Population Ecology 39: 127–137.

    Google Scholar 

  • Frank S. A. (1986) Dispersal polymorphisms in subdivided populations.◊Journal of Theoretical Biology 122: 303–309.

    Google Scholar 

  • Hamilton W. D. & May R. M. (1977) Dispersal in stable habitats. Nature 269: 578–581.

    Google Scholar 

  • Hanski I., Foley P. & Hassell M. (1996) Random walks in a metapopulation: How much density dependence is necessary for long term persistence? Journal of Animal Ecology 65: 274–282.

    Google Scholar 

  • Hassell M. P. & Comins H. N. (1976) Discrete time models for two species competition. Theoretical Population Biology 9: 202–221.

    Google Scholar 

  • Hastings A. (1983) Can spatial variation alone lead to selection for dispersal? Theoretical Population Biology 24: 244–251.

    Google Scholar 

  • Hastings H. M. & Sugihara G. (1993) Fractals. A User’s Guide for the Natural Sciences. Oxford University Press, Oxford.

    Google Scholar 

  • Holt R. D. (1985) Population dynamics in two-patch environments: Some anomalous consequences of an optimal habitat distribution. Theoretical Population Biology 28: 181–208.

    Google Scholar 

  • Holt R. D. & McPeek M. A. (1996) Chaotic population dynamics favors the evolution of dispersal. American Naturalist 148: 709–718.

    Google Scholar 

  • Johnson M. L. & Gaines M. S. (1990) Evolution of dispersal: Theoretical models and empirical tests using birds and mammals. Annual Review of Ecology and Systematics 21: 449–480.

    Google Scholar 

  • Johst K. & Brandl R. (1997) Evolution of dispersal: The importance of the temporal order of reproduction and dispersal. Proceedings of the Royal Society of London B 264: 23–30.

    Google Scholar 

  • Kaitala V., Ylikarjula J., Ranta E. & Lundberg P. (1997) Population dynamics and the colour of environmental noise. Proceedings of the Royal Society of London B 264: 943–948.

    Google Scholar 

  • Levin S. A., Cohen D. & Hastings A. (1984) Dispersal in patchy environments.◊Theoretical Population Biology 26: 165–191.

    Google Scholar 

  • McPeek M. A. & Holt R. D. (1992) The evolution of dispersal in spatially and temporally varying environments. American Naturalist 140: 1010–1027.

    Google Scholar 

  • Monin A. S., Kamenkovich V. M. & Kort V. G. (1977) Variability of the Oceans. Wiley, New York.

    Google Scholar 

  • Motro U. (1982a) Optimal rates of dispersal. I. Haploid populations.◊Theoretical Population Biology 21: 394–411.

    Google Scholar 

  • Motro U. (1982b) Optimal rates of dispersal. II. Diploid populations.◊Theoretical Population Biology 21: 412–429.

    Google Scholar 

  • Motro U. (1983) Optimal rates of dispersal. III. Parent–offspring conflict.◊Theoretical Population Biology 23: 159–168.

    Google Scholar 

  • Olivieri I., Michalakis Y. & Gouyon P. (1995) Metapopulation genetics and the evolution of dispersal. American Naturalist 146: 202–227.

    Google Scholar 

  • Petchey O. L., Gonzalez A. G. & Wilson H. B. (1997) Effects on population persistence: the interaction between environmental noise colour, intraspecific competition and space. Proceedings of the Royal Society of London B 264: 1841–1847.

    Google Scholar 

  • Pimm S. L. (1991) The Balance of Nature? Ecological Issues in the Conservation of Species and Communities. University of Chicago Press, Chicago.

    Google Scholar 

  • Pulliam H. R. (1988) Sources, sinks, and population regulation. American Naturalist 132: 652–661.

    Google Scholar 

  • Ripa J. & Lundberg P. (1996) Noise colour and the risk of extinctions. Proceedings of the Royal Society of London B 263: 1751–1753.

    Google Scholar 

  • Roff D. A. (1975) Population stability and the evolution of dispersal in a heterogeneous enviromnent. Oecologia 19: 217–237.

    Google Scholar 

  • Ruxton G. D. (1996a) Dispersal and chaos in spatially structured models: An individual-level approach. Journal of Animal Ecology 65: 161–169.

    Google Scholar 

  • Ruxton G. D. (1996b) Density-dependent migration and stability in a system of linked populations. Bulletin of Mathematical Biology 58: 643–660.

    Google Scholar 

  • Savill N. J. & Hogeweg P. (1998) Spatially induced speciation prevents extinction: The evolution of dispersal distance in oscillatory predator-prey models. Proceedings of the Royal Society of London B 265: 25–32.

    Google Scholar 

  • Steele J. H. (1985) A comparison of terrestrial and marine ecological systems. Nature 313: 355–358.

    Google Scholar 

  • Travis J. M. J. & Dytham C. (1998) The evolution of dispersal in a metapopulation: A spatially explicit, individual-based model. Proceedings of the Royal Society of London B 265: 17–23.

    Google Scholar 

  • Travis J. M. J. & Dytham C. (1999) Habitat persistence, habitat availability and the evolution of dispersal. Proceedings of the Royal Society of London B 266: 723–728.

    Google Scholar 

  • Travis J. M. J., Murrell D. J. & Dytham C. (1999) The evolution of density-dependent dispersal. Proceedings of the Royal Society of London B 266: 1837–1842.

    Google Scholar 

  • Wilson H. B. & Hassell M. P. (1997) Host-parasitoid spatial models: The interplay of demographic stochasticity and dynamics. Proceedings of the Royal Society of London B 264: 1189–1195.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin M. J. Travis.

About this article

Cite this article

Travis, J. The color of noise and the evolution of dispersal. Ecol Res 16, 157–163 (2001). https://doi.org/10.1046/j.1440-1703.2001.00381.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1046/j.1440-1703.2001.00381.x

Key words

Navigation