Skip to main content
Log in

The application of nasal and oronasal cannulas in the detection of respiratory disturbances during sleep: A review

Die Anwendung nasaler und oronasaler Kanülen zum Nachweis schlafbezogener Atmungsstörungen: Eine Literaturübersicht

  • Review
  • Published:
Somnologie - Schlafforschung und Schlafmedizin Aims and scope Submit manuscript

Summary

Question of the Study

This review focuses on nasal/oronasal cannulas (NOCs) used as flow sensors and their advantages and disadvantages especially in comparison with oronasal thermistors for diagnostics in sleep medicine. The significance of NOCs in the detection of the upper airway resistance syndrome (UARS) is discussed in comparison with other methods of measurement.

Methods

Flow measurement by NOCs is a pressure measurement of dammed-up air that results from an artificial resistance (the respective cannula) in the airway openings. This pressure signal is characterized by a precise time resolution and allows quantification of the airflow after calibration.

Results

The most important studies on NOCs are summarized. The main emphasis is on comparative methodological investigations, e.g. thermistor versus NOC or NOC versus oesophageal manometry.

Conclusions

The results of different studies as well as our own investigations show that inspiratory flattenings of the NOC signal are observed especially when UARS is validated by oesophageal manometry. Intrathoracic pressure fluctuations correspond well with inspiratory and expiratory flow limitations. In contrast to the thermistor signal, the recordings from the NOC can be quantified after calibration of the system, thus eliminating the dis-advantages of the oesophageal manometry (invasive) and the thermistor (insufficient time resolution) without loss of information.

Zusammenfassung

Fragestellung

Im vorliegenden Übersichtsreferat zur Anwendung nasaler/oronasaler Kanülen (NOC) als Atemflusssensor wird die Frage erörtert, welche Vor- und Nachteile NOC im Vergleich zum Thermistor in der schlafmedizinischen Diagnostik haben. Die Bedeutung von NOC beim Nachweis des upper airway resistance syndrome (UARS) wird im Vergleiche mit weiteren Messmethoden diskutier.

Methodik

Die Atemflussmessung mittels NOC stellt eine Druckmessung des Luftstaus dar, der sich durch einen in die Atemwegsöffnungen eingebrachten Widerstand (in Form einer Kanüle) ergibt. Das erhaltene Signal weist eine exakte Zeitauflösung auf und ermöglicht nach Kalibrierung eine Quantifizierung des Atemflusses.

Ergebnisse

Die Inhalte der wichtigsten Publikationen zum Thema werden zusammengefasst. Schwerpunkt bilden Arbeiten zum direkten Methodenvergleich, wie z. B. Thermistor versus NOC oder NOC versus Oesophaguskatheter.

Schlussfolgerungen

Die Ergebnisse verschiedener Studien sowie unsere eigenen Untersuchungen zeigen, dass insbesondere inspiratorische Abflachungen des NOC-Signals (Plateaubildung) mit dem per Oesophaguskatheter detektierten UARS übereinstimmen. Intrathorakale Druckschwankungen korrespondieren mit in- und exspiratorischen Flusslimitationen. Im Gegensatz zum Thermistorsignal eignet sich das Signal einer NOC darüber hinaus zur Quantifizierung des Atemflusses, wodurch sich die Nachteile von Oesophaguskatheter (Invasivität) und Thermistor (mangelnde Zeitauflösung) ohne wesentlichen Informationsverlust eliminieren Iassen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ayappa I, Norman RG, Krieger AC, Rosen A, O'Malley RL, Rapoport DM: Non-invasive detection of respiratory effort-related arousals (RERAs) by a nasal cannula/pressure transducer system. Sleep 23(6): 763–771, 2000.

    PubMed  CAS  Google Scholar 

  2. Badia JR, Farré R, Montserrat JM, Ballester E, Hemandez L, Rotger M, Rodriguez-Roisin R, Navajas D: Forced oscillation technique for the evaluation of severe sleep apnoea/hypopnoea syndrome: a pilot study. Eur Respir J 11: 1128–1134, 1998.

    Article  PubMed  CAS  Google Scholar 

  3. Berg S, Hybinette JC, Gislason T, Hawke M: Continuous intrathoracic pressure monitoring with a new esophageal microchip catheter in sleep-related upper airway obstructions. J Otorlaryngol 24 (3): 160–164, 1995.

    CAS  Google Scholar 

  4. Chervin RD, Aldrich MS: Effects of esophageal pressure monitoring on sleep architecture. Am J Respir Crit Care Med 156: 881–885, 1997.

    PubMed  CAS  Google Scholar 

  5. Chervin RD, Guilleminault C: Obstructive sleep apnoea and related disorders. Neurol Clin 14 (3): 583–609, 1996.

    Article  PubMed  CAS  Google Scholar 

  6. Epstein MD, Chicoine SA, Hanumara RC: Detection of upper airway resistance syndrome using a nasal cannula/pressure transducer. Chest 117(4): 1073–1077, 2000.

    Article  PubMed  CAS  Google Scholar 

  7. Exar EN, Collop NA: The upper airway resistance syndrome. Chest 115 (4): 1127–1139, 1999.

    Article  PubMed  CAS  Google Scholar 

  8. Farré R, Peslin R, Rotger M, Navajas D: Inspiratory dynamic obstruction detected by forced oscillation during CPAP. Am J Respir Crit Care Med 156: 952–956, 1997.

    Google Scholar 

  9. Farré R, Rigau J, Montserrat JM, Ballester E, Navajas D: Relevance of linearizing nasal prongs for assessing hypopneas and flow limitation during sleep. Am J Respir Crit Care Med 163: 494–497, 2001.

    PubMed  Google Scholar 

  10. Guilleminault C, Stoohs R, Clerk A, Cetel M, Maistros P: A case of excessive daytime sleepiness. The upper airway resistance syndrome. Chest 104(3): 781–787, 1993.

    PubMed  CAS  Google Scholar 

  11. Guilleminault C, Winkle R, Korobkin R et al.: Children and noctumal snoring: evaluation of the effects of sleep related respiratory resistive load and daytime functioning. Eur J Pediatr 139: 165–171, 1982.

    Article  PubMed  CAS  Google Scholar 

  12. Hernández L, Ballester E, Farré R, Badia JR, Lobelo R, Navajas D, Montserrat JM: Performance of nasal prongs in sleep studies. Chest 119: 442–450, 2001.

    Article  PubMed  Google Scholar 

  13. Hosselet J-J, Norman RG, Ayappa I, Rapoport DM: Detection of flow limitation with a nasal cannula/pressure transducer system. Am J Respir Crit Care Med 157: 1461–1467, 1998.

    PubMed  CAS  Google Scholar 

  14. Kerl J, Klauke M, Köhler D, Schönhofer B: Flowmessung in der polygraphischen Diagnostik: Thermistor versus Druck-differenzmessung per nasaler Kanüle. (abs.) Schlafbezogene Atmungs- und Kreislaufstörungen. Tagung der Sektion nächtliche Atmungs- und Kreislaufstörungen (SNAK) der DGSM, 12. 11.–13.11. 1999, Klinik Ambrock, Hagen.

  15. Loiodice C, Selek M, Loire M, Levy P, Pepin JL: Measurement of respiratory effort (esophageal pressure) and estimation of resistance of the upper airway in polysomnography: indications, limitations and results. Neurophysiol Clin 28 (6): 507–520, 1998.

    Article  PubMed  CAS  Google Scholar 

  16. Lorino A-M, Lorino H, Dahan E, D'Ortho MP, Coste A, Harf A, Lofaso F: Effects of nasal prongs on nasal airflow resistance. Chest 118: 366–371, 2000.

    Article  PubMed  CAS  Google Scholar 

  17. Mikami A, Watanabe T, Motonishi M, Kyotani K, Uruha S, Terashima K, Teshima Y, Sugita Y: Alteration of esophageal pressure in sleep-disordered breathing. Psychiatry Clin Neurosci 52 (2): 216–217, 1998.

    Article  PubMed  CAS  Google Scholar 

  18. Montserrat JM, Farré R, Ballester E, Felez MA, Pastò M, Navajas D: Evaluation of nasal prongs for estimating nasal flow. Am J Resir Crit Care Med 155: 211–215, 1997.

    CAS  Google Scholar 

  19. Norman RG, Ahmed MM, Walsleben JA, Rapoport DM: Detection of respiratory events during NPSG: nasal cannula/pressure sensor versus thermistor. Sleep 20 (12): 1175–1184, 1997.

    PubMed  CAS  Google Scholar 

  20. Peslin R, Fredeberg JJ: Oscillation mechanics of the respiratory system. In: Amer Physiol. Soc.: Handbook of Physiology, Vol. 3, Part I. Bethesda, MD, pp 145–179, 1986.

  21. Rühle K-H, Fahrner A, Randerath W: Bewertung des oronasalen Flusses mittels Temperatur (Themistor) und Staudruck (Prongs). Pneumologie 55: 4–6, 2001.

    Article  PubMed  Google Scholar 

  22. Sériès F, Marc I: Nasal pressure recording in the diagnosis of sleep apnoea hypopnoe a syndrome. Thorax 54: 506–510, 1999.

    Article  PubMed  Google Scholar 

  23. Xiong C, Sjoberg J, Sveider P, Ask P, Loyd D, Wranne B: Problems in timing of respiration with the nasal thermistor technique. J Am Soc Echocardiogr 6 (2): 210–216, 1993.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Kerl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerl, J., Köhler, D. & Schönhofer, B. The application of nasal and oronasal cannulas in the detection of respiratory disturbances during sleep: A review. Somnologie 6, 169–172 (2002). https://doi.org/10.1046/j.1439-054X.2002.02186.x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1046/j.1439-054X.2002.02186.x

Keywords

Schlüsselwörter

Navigation