Skip to main content
Log in

Barorezeptorsensitivität, Schlaf und OSAS

Baroreceptor Sensitivity, Sleep and OSAS

  • Published:
Somnologie - Schlafforschung und Schlafmedizin Aims and scope Submit manuscript

Zusammenfassung

Fragestellung

Änderungen der Barorezeptorsensitivität (BRS) beim Übergang von Wach zu Schlaf, in Abhängigkeit der Schlaftiefe und bei Erkrankungen wie der arteriellen Hypertonie bzw. einem obstruktiven Schlafapnoesyndrom (OSAS) sind bekannt. Ziel der vorliegenden Untersuchungen war die Analyse der BRS im Schlaf sowohl bei schlafgesunden Probanden in Abhängigkeit des Schlafstadiums NREM-REM als auch bei Patienten mit einem moderaten OSAS in vergleichbaren Apnoe-freien Abschnitten im NREM- und REM-Schlaf.

Patienten und Methodik

Es wurden 43 probanden (45,4±10,7 Jahre) und 21 OSAS-Patienten (55,7±7,0 Jahre) polysomnographisch untersucht. Zusätzlich wurde der Blutdruck nichtinvasiv, kontinuirelich gemessen. Intervalle mit Normalatmung wurden im REM- und NREM-Schlaf selektiert und aus den Spontanänderungen der Herzperiodendauer und des systolischen Blutdrucks mittels Spektralanalyse die Parameter der BRS α-LF, α-HF und α-LFHF extrahiert.

Ergebnisse

Es ergab sich bei den gesunden Schläfern eine signifikant höhere BRS im NREM-Schlaf im Vergleich zum REM-Schlaf, sowohl für den α-LFHF-(P<0,02) als auch α-HF- (P<0,001) Index. Für die Gesamtgruppe der OSAS-Patienten zeigt sich bei signifikant verringerter BRS im NREM-Schlaf (α-LF, α-HF, α-LFHF) im Gegenstz zu den Normalpersonen folglich ein höherer α-HF-Index im REM-als im NREM-Schlaf (P<0,05). Das Vorhandensein einer medikamentös eingestellten arteriellen Hypertonie hat keinen Einfluss auf dieses Ergebnis.

Schlussfolgerung

Die gestörte nächtliche BRS bei Patienten mit einem milden bis moderaten OSAS ist Folge einer Abnahme des Vagotonus im NREM-Schlaf, auch in Apnoefreien Intervallen, und spiegelt das nächtliche Herzkreislaufrisiko bei diesen Patienten wider.

Summary

Question of the Study

Alterations in baroreceptor sensitivity (BRS) during the transition from waking to sleep are known to depend on sleep depth, and have been studied in patients suffering from diseases such as arterial hypertension and obstructive sleep apnoea syndrome (OSAS). The goal of the present study was the analysis of BRS in sleep, both in subjects with healthy sleep and as a function of the NREM-REM stage of sleep, as well as in patients with mild to moderate OSAS in comparable apnoea-free phases in NREM and REM.

Patients and Methods

A total of 43 subjects (45.4±10.7 years of age) and 21 OSAS patients (55±7 years) were studied by polysomnography. Blood pressure was measured continuously by noninvasive means. Intervals with normal respiration were selected in REM and NREM sleep, and the BRS parameters α-LF, α-HF and α-LFHF were extracted by spectral analysis from spontaneous changes in cardiac cycle duration and in systolic blood pressure.

Results

Findings for healthy sleepers revealed BRS in NREM sleep that was significantly greater than that in REM sleep, both for the α-LFHF (P<0.02) as well as for the α-HF (P<0.001) index. For the entire group of OSAS patients, and in contrast to normal subjects, a greater α-HF index in both REM and in NREM sleep (P<0.05) was consequently determined, with significantly reduced BRS in NREM sleep (α-LF, α-HF, α-LFHF). Existence of arterial hypertension stabilized by medication has no effect on theses results.

Conclusions

Disturbed nocturnal BRS in patients with mild to moderate OSAS is the consequence of loss of vagal tone in NREM sleep, also in apnoea-free intervals, and reflects the nocturnal cardiovascular risks in these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Bartels MN, Gonzalez JM, Kim W, De Meersman RE: Oxygen supplementation and cardiac-autonomic modulation in COPD. Chest 118 (3): 691–696, 2000.

    Article  PubMed  CAS  Google Scholar 

  2. Baselli G, Cerutti S, Civardi S, Liberati D, Lombardi F, Malliani A, et al.: Spectral and cross-spectral analysis of heart rate and arterial blood pressure variability signals. Comput Biomed Res 19 (6): 520–534, 1986.

    Article  PubMed  CAS  Google Scholar 

  3. Bernardi L, Leuzzi S, Radaelli A, Passino C, Johnston JA, Sleight P: Low-frequency spontaneous fluctuations of R-R interval and blood pressure in conscious humans: a baroreceptor or central phenomenon? Clin Sci (Colch) 87 (6): 649–654, 1994.

    CAS  Google Scholar 

  4. Bonsignore MR, Parati G, Insalaco G, Marrone O, Castiglioni P, Romano S et al.: Continuous positive airay pressure treatment improves baroreflex control of heart rate during sleep in severe obstructive sleep apnea syndrome. Am J Respir Crit Care Med 166 (3): 279–286, 2002.

    Article  PubMed  Google Scholar 

  5. Brooks D, Homer RL, Floras JS, Kozar LF, Render TC, Phillipson EA: Baroreflex control of heart rate in a canine model of obstructive sleep apnea. Am J Respir Crit Care Med 159 (4 Pt 1): 1293–1297, 1999.

    PubMed  CAS  Google Scholar 

  6. Carlson JT, Hedner JA, Sellgren J, Elam M, Wallin BG: Depressed baroreflex sensitivity in patients with obstructive sleep apnea. Am J Respir Crit Care Med 154 (5): 1490–1496, 1996.

    PubMed  CAS  Google Scholar 

  7. de Boer RW, Karemaker JM, Strackee J: Hemodynamic fluctuations and baroreflex sensitivity in humans: a beat-to-beat model. Am J Physiol 253 (3 Pt 2): H680-H689, 1987.

    Google Scholar 

  8. Eckberg DL, Sleight P.: Human baroreflexes in health and disease. Oxford University Press, Oxford, pp 79–119, 1992.

    Google Scholar 

  9. European Society of Cardiology, North American Society of Pacing and Electrophysiology: Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology [see comments], Circulation 93 (5): 1043–1065, 1996.

    Google Scholar 

  10. Fietze I, Diefenbach K: Healthy sleepers are rare: problems and success rates in establishing a control group for sleep studies. Neuropsychopharmacology 28 (3): 558–561, 2003.

    Article  PubMed  Google Scholar 

  11. Glos M, Romberg D, Fietze I, Röttig J, Knobe M, Witt, C: Analysis of Heart rate and Blood Pressure Variability During Nasal Continuous Positive Airway Pressure Therapy in Patients with Obstructive Sleep Apnea. Comput Cardiol Proceedings of the IEEE CinC 99:603–606, 1999.

    Google Scholar 

  12. Glos M, Romberg D, Leuthold T, Theres H, Witt C, Fietze I: Zeitvariante Spektralanalyse von Herzfrequenz- und Blutdruckvariabilität in Abhängigkeit vom Atmungsmuster. Biomed Tech 45 (Ergänzungsband 2): 209–214, 2000.

    Google Scholar 

  13. Hedner J, Ejnell H, Sellgren J, Hedner T, Wallin G: Is high and fluctuating muscle nerve sympathetic activity in the sleep apnoea syndrome of pathogenetic importance for the development of hypertension? J Hypertens Suppl 6 (4): S529-S531, 1988.

    PubMed  CAS  Google Scholar 

  14. Hughson RL, Quintin L, Annat G, Yamamoto Y, Gharib C: Spontaneous baroreflex by sequence and power spectral methods in humans. Clin Physiol 13 (6): 663–676, 1993.

    PubMed  CAS  Google Scholar 

  15. Kardos A, Watterich G, de menezes R, Csanady M, Casadei B, Rudas L: Determinants of spontaneous baroreflex sensitivity in a healthy working population. Hypertension 37 (3): 911–916, 2001.

    PubMed  CAS  Google Scholar 

  16. Rühle K-H, Rasoke F, Hein H, Ficker JH, Fietze I, Juhasz GJ et al.: Arousals: Akteller Stand. Klinische Bedeutung und offene Fragen. Somnologie 5 (1): 24–45, 2001.

    Article  Google Scholar 

  17. Khoo MC, Kim TS, Berry RB: Spectral indices of cardiac autonomic function in obstructive sleep apnea. Sleep 22 (4): 443–451, 1999.

    PubMed  CAS  Google Scholar 

  18. La Rovere MT, Bigger JT, Jr., Marcus FI, Mortara A, Schwartz PJ: Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators. Lancet 351 (9101): 478–484, 1998.

    Article  PubMed  Google Scholar 

  19. LaRovere MT, Mortara A, Schwartz PJ: Baroreflex sensitivity. J Cardiovasc Electrophysiol 6 (9): 761–774, 1995.

    CAS  Google Scholar 

  20. Lombardi F, Parati G: An update on: cardiovascular and respiratory changes during sleep in normal and hypertensive subjects. Cardiovasc Res 45, (1): 200–211, 2000.

    Article  PubMed  CAS  Google Scholar 

  21. Lucini D, Mela GS, Malliani A, Pagani M: Impairment in cardiac autonomic regulation preceding arterial hypertension in humans: insights from spectral analysis of beat-by-beat cardiovascular variability, Circulation 106 (21): 2673–2679, 2002.

    Article  PubMed  Google Scholar 

  22. Mateika JH, Kavey NB, Mitru G: Spontaneous baroreflex analysis in non-apneic snoring individuals during NREM sleep. Sleep 22 (4): 461–468, 1999.

    PubMed  CAS  Google Scholar 

  23. Monti, A, Medigue C, Nedelcoux H, Escourrou P: Autonomic control of the cardiovascular system during sleep in normal subjects. Eur J Appl Physiol 87 (2): 174–181, 2002.

    Article  PubMed  CAS  Google Scholar 

  24. Mortara A, La Rovere MT, Pinna GD, Prpa A, Maestri R, Febo O et al.: Arterial baroreflex modulation of heart rate in chronic heart failure: clinical and hemodynamic correlates and prognostic implications. Circulation 96 (10): 3450–3458, 1997.

    PubMed  CAS  Google Scholar 

  25. Narkiewicz K, Kato M, Phillips BG, Pesek CA, Davison DE, Somers Vk: Nocturnal continuous positive airway pressured decreases daytime sympathetic traffic in obstructive sleep apnea. Circulation 100 (23): 2332–2335, 1999.

    PubMed  CAS  Google Scholar 

  26. Narkiewicz K, Montano N, Cogliati C, van de Bome PJ, Dyken ME, Somers VK: Altered cardiovascular variability in obstructive sleep apnea. Circulation 98 (11): 1071–1077, 1998.

    PubMed  CAS  Google Scholar 

  27. Noda A, Okada T, Hayashi H, Yasuma F, Yokota M: 24-hour ambulatory blood pressure variability in obstructive sleep apnea syndrome. Chest 103 (5): 1343–1347, 1993.

    PubMed  CAS  Google Scholar 

  28. Nolan J, Batin PD, Andrews R, Lindsay SJ, Brooksby P, Mullen M et al.: Prospective study of heart rate variability and mortality in chronic heart failure: results of the United Kingdom heart failure evaluation and assessment of risk trial (UK-heart), Circulation 98 (15): 1510–1516, 1998.

    PubMed  CAS  Google Scholar 

  29. Pagani M, Lombardi F, Guzzetti S, Rimoldi O, Furlan R, Pizzinelli P et al.: Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res 59 (2): 178–193, 1986.

    PubMed  CAS  Google Scholar 

  30. Pagani M, Somers V, Furlan R, Dell'Orto S, Conway J, Baselli G et al.: Changes in autonomic regulation induced by physical training in mild hypertension. Hypertension 12 (6): 600–610, 1988.

    PubMed  CAS  Google Scholar 

  31. Parati G, Di RM, Bonsignore MR, Insalaco G, Marrone O, Castiglioni P et al.: Autonomic cardiac regulation in obstructive sleep apnea syndrome evidence from spontaneous baroreflex analysis during sleep. J Hypertens 15 (12 Pt 2): 1621–1626, 1997.

    Article  PubMed  CAS  Google Scholar 

  32. Parati G, Di RM, Mancia G: How to measure baroreflex sensitivity: from the cardiovascular laboratory to daily life. J Hypertens 18 (1): 7–19, 2000.

    Article  PubMed  CAS  Google Scholar 

  33. Parlow J, Viale JP, Annat G, Hughson R, Quintin L: Spontaneous cardiac baroreflex in humans comparison with drug-induced responses. Hypertension 25 (5): 1058–1068, 1995.

    PubMed  CAS  Google Scholar 

  34. Persson PB, DiRienzo M, Castiglioni P, Cerutti C, Pagani M, Honzikova N et al.: Time versus frequency domain techniques for assessing baroreflex sensitivity. J Hypertens 19 (10): 1699–1705, 2001.

    Article  PubMed  CAS  Google Scholar 

  35. Pitzalis MV, Massari F, Mastropasqua F, Fioretti A, Guida P, Colombo R et al.: Age effect on phase relations between respiratory oscillations of the RR interval and systolic pressre [In Process Citation]. Pacing Clin Electrophysiol 23 (5): 847–853, 2000.

    Article  PubMed  CAS  Google Scholar 

  36. Pitzalis MV, Mastropasqua F, Passantino A, Massari F, Ligurgo L, Forleo C et al.: Comparison between noninvasive indices of baroreceptor sensitivity and the phenylephrine method in postmyocardial infarction patients. Circulation 97 (14): 1362–1367, 1998.

    PubMed  CAS  Google Scholar 

  37. Resta O, Rana L, Procacci V, Guido P, Picca V, Scarpelli F: Autonomic dysfunction in normotensive awake subjects with obstructive sleep apnoea syndrome. Monaldi Arch Chest Dis 53 (1): 23–29, 1998.

    PubMed  CAS  Google Scholar 

  38. Roche F, Court-Fortune I, Pichot V, Duveney D, Costes F, Emonot A et al.: Reduced cardiac sympathetic autonomic tone after long-term nasal continuous positive airway pressure in obstructive sleep apnoea syndrome. Clin Physiol 19 (2): 127–134, 1999.

    Article  PubMed  CAS  Google Scholar 

  39. Salo TM, Jula AM, Piha JS, Kantola IM, Pelttari L, Rauhala E et al.: Comparison of autonomic withdrawal in men with obstructive sleep apnea syndrome, systemic hypertension, and neither condition. Am J Cardiol 85 (2): 232–238, 2000.

    Article  PubMed  CAS  Google Scholar 

  40. Somers, VK, Dyken ME, Clary MP, Abboud FM: Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Invest 96 (4): 1897–1904, 1995.

    Article  PubMed  CAS  Google Scholar 

  41. Tank J, Baevski RM, Fender A, Baevski AR, Graves KF, Ploewka K et al.: Reference values of indices of spontaneous baroreceptor reflex sensitivity. Am J Hypertens 13 (3): 268–275, 2000.

    Article  PubMed  CAS  Google Scholar 

  42. Tank J, Diedrich A, Hale N, Niaz FE, Furlan R, Robertson RM et al.: Relationship between blood pressure, sleep K-complexes, and muscle sympathetic nerve activity in humans. Am J Physiol Regul Integr Comp Physiol 285 (1): R208-R214, 2003.

    PubMed  CAS  Google Scholar 

  43. Tkacova R, Dajani HR, Rankin F, Fitzgerald FS, Floras JS, Douglas BT: Continuous positive airway pressure improves nocturnal baroreflex sensitivity of patients with heart failure and obstructive sleep apnea. J Hypertens 18 (9): 1257–1262, 2000.

    Article  PubMed  CAS  Google Scholar 

  44. Vanninen E, Tuunainen A, Kansanen M, Uusitupa M, Länsimies E: Cardiac sympathovagal balance during sleep apnea episodes. Clin Physiol 16 (3): 209–216, 1996.

    PubMed  CAS  Google Scholar 

  45. Watkins LL, Grossman P, Sherwood A: Noninvasive assessment of baroreflex control in borderline hypertension. Comparison with the phenylephrine method. Hypertension 28 (2): 238–243, 1996.

    PubMed  CAS  Google Scholar 

  46. Welch PD: The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short, Modified Periodograms. IEEE Trans Audio Electroacoust AU-15:70–73, 1967.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingo Fietze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fietze, I., Glos, M. Barorezeptorsensitivität, Schlaf und OSAS. Somnologie 7, 140–146 (2003). https://doi.org/10.1046/j.1432-9123.2003.00005.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1046/j.1432-9123.2003.00005.x

Schlüsselwörter

Keywords

Navigation