Skip to main content

Advertisement

Log in

Central and peripheral nerve regeneration by transplantation of Schwann cells and transdifferentiated bone marrow stromal cells

  • Review Article
  • Published:
Anatomical Science International Aims and scope Submit manuscript

Abstract

In contrast to the peripheral nervous system (PNS), little structural and functional regeneration of the central nervous system (CNS) occurs spontaneously following injury in adult mammals. The inability of the CNS to regenerate is mainly attributed to its own inhibitorial environment such as glial scar formation and the myelin sheath of oligodendrocytes. Therefore, one of the strategies to promote axonal regeneration of the CNS is to experimentally modify the environment to be similar to that of the PNS. Schwann cells are the myelinating glial cells in the PNS, and are known to play a key role in Wallerian degeneration and subsequent regeneration. Central nervous system regeneration can be elicited by Schwann cell transplantation, which provides a suitable environment for regeneration. The underlying cellular mechanism of regeneration is based upon the cooperative interactions between axons and Schwann cells involving the production of neurotrophic factors and other related molecules. Furthermore, tight and gap junctional contact between the axon and Schwann cell also mediates the molecular interaction and linking. In this review, the role of the Schwann cell during the regeneration of the sciatic (representing the PNS) and optic (representing the CNS) nerves is explained. In addition, the possibility of optic nerve reconstruction by an artificial graft of Schwann cells is also described. Finally, the application of cells not of neuronal lineage, such as bone marrow stromal cells (MSCs), in nerve regeneration is proposed. Marrow stromal cells are known as multipotential stem cells that, under specific conditions, differentiate into several kinds of cells. The strategy to transdifferentiate MSCs into the cells with a Schwann cell phenotype and the induction of sciatic and optic nerve regeneration are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe K, Namikawa K, Honma M et al. (2001) Inhibition of Ras extracellular-signal-regulated kinase (ERK) mediated signalling promotes ciliary neurotrophic factor (CNTF) expression in Schwann cells. J Neurochem 7, 700–3.

    Article  Google Scholar 

  • Agius E, Cochard P (1998) Comparison of neurite outgrowth induced by intact and injured sciatic nerves: a confocal and functional analysis. J Neurosci 18, 328–38.

    PubMed  CAS  Google Scholar 

  • Aguayo AJ (1985) Axonal regeneration from injured neurons in the adult mammalian central nervous system. In: Synaptic Plasticity (Cotman CW, ed.). Guilford Press, New York, 457–84.

    Google Scholar 

  • Asher RA, Morgenstern DA, Moon LD, Fawcett JW (2001) Chondroitin sulphate proteoglycans: inhibitory components of the glial scar. Prog Brain Res 132, 611–9.

    Article  PubMed  CAS  Google Scholar 

  • Bankiewicz KS, Palmatier M, Plunkett RJ, Cummins A, Oldfield FH (1994) Reversal of hemiparkinsonian syndrome in non-human primates by amnion implantation into caudate nucleus. J Neurosurg 81, 869–76.

    Article  PubMed  CAS  Google Scholar 

  • Berry M, Rees L, Hall SM, Yiu P, Sievers J (1988) Optic axons regenerate into sciatic nerve isografts only in the presence of Schwann cells. Brain Res Bull 20, 223–31.

    Article  PubMed  CAS  Google Scholar 

  • Bolin LM, Shooter EM (1993) Neurons regulate Schwann cell genes by diffusible molecules. J Cell Biol 123, 237–43.

    Article  PubMed  CAS  Google Scholar 

  • Brittis PA, Flanagan JG (2001) Nogo domains and a Nogo receptor: implications for axon regeneration. Neuron 30, 11–4.

    Article  PubMed  CAS  Google Scholar 

  • Bunge MB (1994) Transplantation of purified populations of Schwann cells into lesioned adult rat spinal cord. J Neurol 242, S36–9.

    Article  PubMed  CAS  Google Scholar 

  • Cadelli DS, Bandtlow CE, Schwab ME (1992) Oligodendrocyte- and myelin-associated inhibitors of neurite outgrowth: their involvement in the lack of CNS regeneration. Exp Neurol 115, 189–92.

    Article  PubMed  CAS  Google Scholar 

  • Cai D, Shen Y, De Bellard M, Tang S, Filbin MT (1999) Prior exposure to neurotrophins blocks inhibition of axonal regeneration by MAG and myelin via a cAMP-dependent mechanism. Neuron 22, 89–101.

    Article  PubMed  CAS  Google Scholar 

  • Carenini S, Montag D, Cremer H, Schachner M, Martini R (1997) Absence of the myelin-associated glycoprotein (MAG) and the neural cell adhesion molecule (N-CAM) interferes with the maintenance, but not with the formation of peripheral myelin. Cell Tissue Res 287, 3–9.

    Article  PubMed  CAS  Google Scholar 

  • Castillo B Jr, del Cerro M, Breakefield XO et al. (1994) Retinal ganglion cell survival is promoted by genetically modified astrocytes designed to secrete brain-derived neurotrophic factor. Brain Res 647, 30–6.

    Article  PubMed  CAS  Google Scholar 

  • Chandross KJ (1998) Nerve injury and inflammation cytokines modulate junctions in the peripheral nervous system. Glia 24, 21–31.

    Article  PubMed  CAS  Google Scholar 

  • Chernousov MA, Carey DJ (2000) Schwann cell extracellular matrix molecules and their receptors. Histol Histopathol 15, 593–601.

    PubMed  CAS  Google Scholar 

  • Cho KS, Chan PM, So KF, Yip HK, Chung SK (1999) Ciliary neurotrophic factor promotes the regrowth capacity but not the survival of intraorbitally axotomized retinal ganglion cells in adult hamsters. Neuroscience 94, 623–8.

    Article  PubMed  CAS  Google Scholar 

  • Davies SJ, Fitch MT, Memberg SP, Hall AK, Raisman G, Silver J (1997) Regeneration of adult axons in white matter tracts of the central nervous system. Nature 390, 680–3.

    PubMed  CAS  Google Scholar 

  • Deng W, Obrocka M, Fischer I, Prockop DJ (2001) In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP. Biochem Biophys Res Commun 82, 148–52.

    Article  CAS  Google Scholar 

  • Dermietzel R, Spray DC (1993) Gap junctions in the brain: where, what type, how many and why? Trends Neurosci 16, 186–92.

    Article  PubMed  CAS  Google Scholar 

  • de Waegh SM, Lee VM, Brady ST (1992) Local modulation of neurofilament phosphorylation, axonal caliber, and slow axonal transport by myelinating Schwann cells. Cell 68, 451–63.

    Article  PubMed  Google Scholar 

  • Dezawa M, Nagano T (1993) Contacts between regenerating axons and the Schwann cells of sciatic nerve segments grafted to the optic nerve of adult rats. J Neurocytol 22, 1103–12.

    Article  PubMed  CAS  Google Scholar 

  • Dezawa M, Mutoh T, Dezawa A, Ishide T (1996) Tight junctions between the axon and Schwann cell during PNS regeneration. Neuroreport 7, 1829–32.

    Article  PubMed  CAS  Google Scholar 

  • Dezawa M, Nagano T (1996) Immunohistochemical localization of cell adhesion molecules and cell-cell contact proteins during regeneration of the rat optic nerve induced by sciatic nerve autotransplantation. Anat Rec 246, 114–26.

    Article  PubMed  CAS  Google Scholar 

  • Dezawa M, Kawana K, Adachi-Usami E (1997) The role of Schwann cells during retinal ganglion cell regeneration induced by peripheral nerve transplantation. Invest Ophthalmol Vis Sci 38, 1401–10.

    PubMed  CAS  Google Scholar 

  • Dezawa M, Mutoh T, Dezawa A, Adachi-Usami E (1998) Putative gap junctional communication between axon and regenerating Schwann cells during mammalian peripheral nerve regeneration. Neuroscience 85, 663–7.

    Article  PubMed  CAS  Google Scholar 

  • Dezawa M, Kawana K, Negishi H, Adachi-Usami E (1999) Glial cells in degenerating and regenerating optic nerve of the adult rat. Brain Res Bull 48, 573–9.

    Article  PubMed  CAS  Google Scholar 

  • Dezawa M, Adachi-Usami E (2000) Role of Schwann cells in retinal ganglion cell axon regeneration. Prog Retin Eye Res 19, 171–204.

    Article  PubMed  CAS  Google Scholar 

  • Dezawa M. Takahashi I, Esaki M, Takano M, Sawada H (2001) Sciatic nerve regeneration in rats induced by transplantation of vitro differentiated bone marrow stromal cells. Eur J Neurosci 14, 1771–6.

    Article  PubMed  CAS  Google Scholar 

  • Dezawa M. Reconstruction of optic nerve circuit by cell transplantation in adult rats. Mol Med (in press).

  • Doherty P, Walsh FS (1994) Signal transduction events underlying neurite outgrowth stimulated by cell adhesion molecules. Curr Opin Neurobiol 4, 49–55.

    Article  PubMed  CAS  Google Scholar 

  • Eglitis MA, Mezey E (1997) Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci USA 94, 4080–5.

    Article  PubMed  CAS  Google Scholar 

  • Farquhar MG, Palade GE (1963) Junctional complexes in various epithelia. J Cell Biol 17, 375–412.

    Article  PubMed  CAS  Google Scholar 

  • Fawcett JW, Keynes RJ (1990) Peripheral nerve regeneration. Annu Rev Neurosci 13, 43–60.

    Article  PubMed  CAS  Google Scholar 

  • Fouad K, Dietz V, Schwab ME (2001) Improving axonal growth and functional recovery after experimental spinal cord injury by neutralizing myelin associated inhibitors. Brain Res Rev 36, 204–12.

    Article  PubMed  CAS  Google Scholar 

  • Fournier AE, Strittmatter SM (2001) Repulsive factors and axon regeneration in the CNS. Curr Opin Neurobiol 11, 89–94.

    Article  PubMed  CAS  Google Scholar 

  • Gimble JM, Hudson J, Henthorn J, Hua XX, Burstein SA (1991) Regulation of interleukin 6 expression in murine bone marrow stromal cells. Exp Hematol 19, 1055–60.

    PubMed  CAS  Google Scholar 

  • Hall S (2001) Nerve repair: a neurobiologist’s view. Br J Hand Surg 26, 129–36.

    Article  CAS  Google Scholar 

  • Harvey AR, Plant GW (1995) Schwann cells and fetal tectal tissue cografted to the midbrain of newborn rats: fate of Schwann cells and their influence on host retinal innervation of grafts. Exp Neurol 134, 179–91.

    Article  PubMed  CAS  Google Scholar 

  • Harvey AR, Plant GW, Tan MM (1995) Schwann cells and the regrowth of axons in the mammalian CNS: a review of transplantation studies in the rat visual system. Clin Exp Pharmacol Physiol 22, 569–79.

    Article  PubMed  CAS  Google Scholar 

  • Ide C (1996) Peripheral nerve regeneration. Neurosci Res 25, 101–21.

    PubMed  CAS  Google Scholar 

  • Ide C, Kitada M, Chakrabortty S et al. (2001) Grafting of choroid plexus ependymal cells promotes the growth of regenerating axons in the dorsal funiculus of rat spinal cord: a preliminary report. Exp Neurol 167, 242–51.

    Article  PubMed  CAS  Google Scholar 

  • Iwashita Y, Kawaguchi S, Murata M (1994) Restoration of function by replacement of spinal cord segments in the rat. Nature 367, 167–70.

    Article  PubMed  CAS  Google Scholar 

  • Jessen KR, Mirsky R (1999) Developmental regulation in the Schwann cell lineage. Adv Exp Med Biol 468, 3–12.

    PubMed  CAS  Google Scholar 

  • Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, Frisen J (1999) Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96, 25–34.

    Article  PubMed  CAS  Google Scholar 

  • Jones LL, Oudega M, Bunge MB, Tuszynski MH (2001) Neurotrophic factors, cellular bridges and gene therapy for spinal cord injury. J Physiol 533, 83–9.

    Article  PubMed  CAS  Google Scholar 

  • Kopen GC, Prockop DJ, Phinney DG (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA 96, 10711–6.

    Article  PubMed  CAS  Google Scholar 

  • Lacroix S, Tuszynski MH (2000) Neurotrophic factors and gene therapy in spinal cord injury. Neurorehab Neu Rep 14, 265–75.

    CAS  Google Scholar 

  • Lazarov-Spiegler O, Rapalino O, Agranov G, Schwartz M (1998) Restricted inflammatory reaction in the CNS: a key impediment to axonal regeneration? Mol Med Today 4, 337–42.

    Article  PubMed  CAS  Google Scholar 

  • Lundberg C, Martinez-Serrano A, Cattaneo E, McKay RD, Bjorklund A (1997) Survival, integration, and differentiation of neural stem cell lines after transplantation to the adult rat striatum. Exp Neurol 145, 342–60.

    Article  PubMed  CAS  Google Scholar 

  • Martini R (1994) Expression and functional roles of neural cell surface molecules and extracellular matrix components during development and regeneration of peripheral nerves. J Neurocytol 23, 1–28.

    Article  PubMed  CAS  Google Scholar 

  • Martini R (2001) The effect of myelinating Schwann cells on axons. Muscle Nerve 24, 456–66.

    Article  PubMed  CAS  Google Scholar 

  • Maurel P, Salzer JL (2000) Axonal regulation of Schwann cell proliferation and survival and the initial events of myelination requires PI 3-kinase activity. J Neurosci 20, 4635–45.

    PubMed  CAS  Google Scholar 

  • Mckeon RJ, Schreiber RC, Rudge JS, Silver J (1991) Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J Neurosci 11, 3398–411.

    PubMed  CAS  Google Scholar 

  • McMillian MK, Thai L, Hong JS, O’Callaghan JP, Pennypacker KR (1994) Brain injury in a dish: a model for reactive gliosis. Trends Neurosci 17, 138–42.

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Franke A, Wilkinson GA, Kruttgen A et al. (1998) Depolarization and cAMP elevation rapidly recruit TrkB to the plasma membrane of CNS neurons. Neuron 21, 681–93.

    Article  PubMed  CAS  Google Scholar 

  • Morrison SJ, White PM, Zock C, Anderson DJ (1999) Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells. Cell 96, 737–49.

    Article  PubMed  CAS  Google Scholar 

  • Negishi H, Dezawa M, Oshitari T, Adachi-Usami E (2001) Optic nerve regeneration within artificial Schwann cell graft in the adult rat. Brain Res Bull 55, 409–19.

    Article  PubMed  CAS  Google Scholar 

  • Nieto-Sampedro M (1999) Neurite outgrowth inhibitors in gliotic tissue. Adv Exp Med Biol 468, 207–24.

    PubMed  CAS  Google Scholar 

  • Oudega M, Gautier SE, Chapon P et al. (2001) Axonal regeneration into Schwann cell grafts within resorbable poly (alpha-hydroxyacid) guidance channels in the adult rat spinal cord. Biomaterials 22, 1125–36.

    Article  PubMed  CAS  Google Scholar 

  • Pasterkamp RJ, Giger RJ, Ruitenberg MJ et al. (1999) Expression of the gene encoding the chemorepellent semaphorin III is induced in the fibroblast component of neural scar tissue formed following injuries of adult but not neonatal CNS. Mol Cell Neurosci 13, 143–66.

    Article  PubMed  CAS  Google Scholar 

  • Prockop DJ (1997) Marrow stromal cells as stem cells for non-hematopoietic tissues. Science 276, 71–4.

    Article  PubMed  CAS  Google Scholar 

  • Quan MZ, Kosaka J, Watanabe M, Wakabayashi T, Fukuda Y (1999) Survival of axotomized retinal ganglion cells in peripheral nerve-grafted ferrets. Invest Ophthalmol Mol Vis Sci 40, 2360–6.

    CAS  Google Scholar 

  • Raisman G (1997) Use of Schwann cells to induce repair of adult CNS tracts. Rev Neurol 153, 521–5.

    PubMed  CAS  Google Scholar 

  • Ramon-Cueto A, Plant GW, Avila J, Bunge MB (1998) Longdistance axonal regeneration in the transected adult rat spinal cord is promoted by olfactory ensheathing glia transplants. J Neurosci 18, 3803–15.

    PubMed  CAS  Google Scholar 

  • Sanchez-Ramos J, Song S, Cardozo-Pelaez F et al. (2000) Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 164, 247–56.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki H, Iso H, Coffey P, Inoue T, Fukuda Y (1998) Prepulse facilitation of auditory startle response in hamsters. Neurosci Lett 248, 117–20.

    Article  PubMed  CAS  Google Scholar 

  • Sawamoto K, Nakao N, Kakishita K et al. (2001) Generation of dopaminergic neurons in the adult brain from mesencephalic precursor cells labeled with a nestin-GFP transgene. J Neurosci 21, 3895–903.

    PubMed  CAS  Google Scholar 

  • Schwab ME, Caroni P (1988) Rat CNS myelin and a subtype of oligodendrocytes in culture represent a nonpermissive substrate for neurite growth and fibroblast spreading. J Neurosci 8, 2381–93.

    PubMed  CAS  Google Scholar 

  • Schwartz M, Moalem G, Leibowitz-Amit R, Cohen IR (1999) Innate and adaptive immune responses can be beneficial for CNS repair. Trends Neurosci 22, 295–9.

    Article  PubMed  CAS  Google Scholar 

  • Shah NM, Groves AK, Anderson DJ (1996) Alternative neural crest cell fates are instructively promoted by TGFbeta superfamily members. Cell 85, 331–43.

    Article  PubMed  CAS  Google Scholar 

  • Shen YJ, DeBellard ME, Salzer JL, Roder J, Filbin MT (1998) Myelin-associated glycoprotein in myelin and expressed by Schwann cells inhibits axonal regeneration and branching. Mol Cell Neurosci 12, 79–91.

    Article  PubMed  CAS  Google Scholar 

  • Shuto T, Horie H, Hikawa N et al. (2001) IL-6 up-regulates CNTF mRNA expression and enhances neurite regeneration. Neuroreport 12, 1081–5.

    Article  PubMed  CAS  Google Scholar 

  • So KF, Aguayo AJ (1985) Lengthy regrowth of cut axons from ganglion cells after peripheral nerve transplantation into the retina of adult rats. Brain Res 328, 349–54.

    Article  PubMed  CAS  Google Scholar 

  • Soares HD, Chen SC, Morgan JI (2001) Differential and prolonged expression of Fos-lacZ and Jun — lacZ in neurons, glia, and muscle following sciatic nerve damage. Exp Neurol 167, 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi J, Palmer TD, Gage FH (1999) Retinoic acid and neurotrophins collaborate to regulate neurogenesis in adultderived neural stem cell cultures. J Neurobiol 38, 65–81.

    Article  PubMed  CAS  Google Scholar 

  • Tetzlaff W (1982) Tight junction contact events and temporary gap junctions in the sciatic nerve fibers of the chicken during Wallerian degeneration and subsequent regeneration. J Neurocytol 11, 839–58.

    Article  PubMed  CAS  Google Scholar 

  • Toews AD, Barrett C, Morell P (1998) Monocyte chemoattractant protein 1 is responsible for macrophage recruitment following injury to sciatic nerve. J Neurosci Res 53, 260–7.

    Article  PubMed  CAS  Google Scholar 

  • Torigoe K, Tanaka HF, Takahashi A, Awaya A, Hashimoto K (1996) Basic behavior of migratory Schwann cells in peripheral nerve regeneration. Exp Neurol 137, 301–8.

    Article  PubMed  CAS  Google Scholar 

  • Vidal-Sanz M, Bray GM, Aguayo AJ (1991) Regenerated synapses persist in the superior colliculus after the regrowth of retinal ganglion cell axons. J Neurocytol 20, 940–52.

    Article  PubMed  CAS  Google Scholar 

  • Villegas-Perez MP, Vidal-Sanz M, Bray GM, Aguayo AJ (1988) Influences of peripheral nerve grafts on the survival and regrowth of axotomized retinal ganglion cells in adult rats. J Neurosci 8, 265–80.

    PubMed  CAS  Google Scholar 

  • von Bartheld CS (1998) Neurotrophins in the developing and regenerating visual system. Histol Histopathol 13, 437–59.

    Google Scholar 

  • Warner A (1992) Gap junctions in development-a perspective. Semin Cell Biol 3, 81–91.

    Article  PubMed  CAS  Google Scholar 

  • Woodbury D, Schwarz EJ, Prockop DJ, Black IB (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61, 364–70.

    Article  PubMed  CAS  Google Scholar 

  • Yip HK, So KF (2000) Axonal regeneration of retinal ganglion cells: effect of trophic factors. Prog Retin Eye Res 19, 559–75.

    Article  PubMed  CAS  Google Scholar 

  • Zochodne DW (2000) The microenvironment of injured and regenerating peripheral nerves. Muscle Nerve Suppl 9, S33–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mari Dezawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dezawa, M. Central and peripheral nerve regeneration by transplantation of Schwann cells and transdifferentiated bone marrow stromal cells. Anato Sci Int 77, 12–25 (2002). https://doi.org/10.1046/j.0022-7722.2002.00012.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1046/j.0022-7722.2002.00012.x

Key words

Navigation