Ecological Research

, Volume 18, Issue 4, pp 397–404 | Cite as

Diversity–productivity–stability relationship in freshwater ecosystems: Whole-systemic view of all trophic levels

  • Ichiro Aoki
Original Articles

The idea of the diversity–productivity relationship in ecology was originated by Charles Darwin more than 100 years ago and was highlighted by McNaughton in 1993. There have been extensive studies on this relationship, mostly conducted in grasslands. Many studies assert that a high level of biodiversity leads to high primary productivity, in accord with Darwin. However, these studies have mostly been done in grasslands (primary producer) and do not take into account effects from other trophic levels. The possibility remains that the positive diversity–production relationship does not hold in other types of ecological systems and that multitrophic effects influence and modify the relationship. In the present study, the diversity–productivity relationship is examined for freshwater foodwebs, including whole trophic compartments, by using indices of diversity and productivity more suitable for a whole systemic study on ecological systems. It seems that there are two trends in the relationship: productivity increases with the increase of diversity in ecosystems when diversity is small, and decreases with diversity in ecosystems when diversity is large. The first trend may be due to nutrient-limiting characteristics and the second trend may be due to photosynthetically active radiation–limiting characteristics. Also, both higher trophic and whole-systemic productivities are found to increase relative to primary productivity with the increase of diversity. Stability indices introduced previously, combined with the present results, reveal a positive correlation between relative productivity and stability in freshwater foodwebs, including all trophic compartments.

Key words

biodiversity foodwebs freshwater ecosystems productivity stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allison E. H., Patterson G., Irvine K., Thompson A. B. & Menz A. (1995) The pelagic ecosystem. In: The Fishery Potential and Productivity of the Pelagic Zone of Lake Malawi/Niassa (ed. A. Menz) pp. 351–367. Natural Resources Institute, Chatham.Google Scholar
  2. Angelini R. & Petrere M. Jr (1996) The ecosystem of Broa reservoir, Sao Paulo State, Brazil, as described using ECOPATH. Naga, the ICLARM Quarterly 19: 36–41.Google Scholar
  3. Aoki I. & Mizushima T. (2001) Biomass diversity and stability of food webs in aquatic ecosystems. Ecological Research 16: 65–71.Google Scholar
  4. Begon M., Harper J. L. & Townsend C. R. (1996) Ecology, 3rd edn. Blackwell Science, Oxford.Google Scholar
  5. Belovsky G. E. & Slade J. B. (2000) Insect herbivory accelerates nutrient cycling and increases plant production. Proceedings of the National Academy of Sciences USA 97: 14 412–14 417.Google Scholar
  6. Broughton L. C. & Gross K. L. (2000) Patterns of diversity in plant and soil microbial communities along a productivity gradient in a Michigan old-field. Oecologia 125: 420–427.CrossRefGoogle Scholar
  7. Chase J. M., Leibold M. A., Downing A. L. & Shurin J. B. (2000) The effects of productivity, herbivory, and plant species turnover in grassland food webs. Ecology 81: 2485–2497.Google Scholar
  8. Chookajorn T., Leenanond Y., Moreau J. & Sricharoendham B. (1994) Evolution of trophic relationships in Ubolratana Reservoir (Thailand) as described using a multispecies trophic model. Asian Fisheries Science 7: 201–213.Google Scholar
  9. Christensen V. & Pauly D. (1992) ECOPATH II – a software for balancing steady-state ecosystem models and calculating network characteristics. Ecological Modelling 61: 169–185.Google Scholar
  10. Christensen V. & Pauly D. (eds) (1993) Trophic Models of Aquatic Ecosystems, ICLARM Conference Proceedings 26: 1–390. International Center for Living Aquatic Resources Management, Manila.Google Scholar
  11. Darwin C. (1859) The Origin of Species by Means of Natural Selection. John Murray, London.Google Scholar
  12. Darwin C. (1964) On the Origin of Species by Charles Darwin, A Facsimile of the First Edition. Harvard University Press, Cambridge.Google Scholar
  13. Díaz S. & Cabido M. (2001) Vive la différence: plant functional diversity matters to ecosystem processes. Trends in Ecology and Evolution 16: 646–655.Google Scholar
  14. Downing A. L. & Leibold M. A. (2002) Ecosystem consequences of species richness and composition in pond food webs. Nature 416: 837–841.Google Scholar
  15. Duffy J. E., MacDonald K. S., Rhode J. M. & Paker J. D. (2001) Grazer diversity, functional redundancy, and productivity in seagrass beds: an experimental test. Ecology 82: 2417–2434.Google Scholar
  16. Emmerson M. C., Solan M., Emes C., Paterson D. M., Raffaelli D. (2001) Consistent patterns and the idiosyncratic effects of biodiversity in marine ecosystems. Nature 411: 73–77.Google Scholar
  17. Hector A., Schmid B., Beierkuhnlein C., Caldeira M. C., Diemer M., Dimitrakopoulos P. G., Finn J. A., Freitas H., Giller P. S., Good J., Harris R., Högberg P., Huss-Danell K., Joshi J., Jumpponen A., Körner C., Leadley P. W., Loreau M., Minns A., Mulder C. P. H., O’Donovan G., Otway S. J., Pereira J. S., Prinz A., Read D. J., Scherer-Lorenzen M., Schulze E.-D., Siamantziouras A-S. D., Spehn E. M., Terry A. C., Troumbis A. Y., Woodward F. I., Yachi S. & Lawton J. H. (1999) Plant diversity and productivity experiments in European grasslands. Science 286: 1123–1127.CrossRefPubMedGoogle Scholar
  18. Internationational Lake Environment Committee (1994) Data Book of World Lake Environments 2. International Lake Environment Committee Foundation (ILEC), Kusatsu, Shiga.Google Scholar
  19. Kinzig A. P., Pacala S. W. & Tilman D. (eds) (2002) The Functional Consequences of Biodiversity. Princeton University Press, Princeton.Google Scholar
  20. Klironomos J. N., McCune J., Hart M. & Neville J. (2000) The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivity. Ecology Letters 3: 137–141.Google Scholar
  21. Kolding J. (1993) Trophic interrelationships and community structure at two different periods of Lake Turkana, Kenya: a comparison using the ECOPATH II box model. In: Trophic Models of Aquatic Ecosystems, ICLARM Conference Proceedings 26 (eds V. Christensen & D. Pauly) pp. 116–123. International Center for Living Aquatic Resources Management, Manila.Google Scholar
  22. Loreau M. (2000) Biodiversity and ecosystem functioning: recent theoretical advances. Oikos 91: 3–17.Google Scholar
  23. MacArthur R. (1955) Fluctuations of animal populations, and a measure of community stability. Ecology 36: 533–536.Google Scholar
  24. Mavuti K., Moreau J., Munyandorero J. & Plisnier P. D. (1996) Analysis of trophic relationships in two shallow equatorial lakes Lake Naivasha (Kenya) and Lake Ihema (Rwanda) using a multispecies trophic model. Hydrobiologia 321: 89–100.Google Scholar
  25. Mazancourt C. D., Loreau M. & Abbadie L. (1998) Grazing optimization and nutrient cycling: when do herbivores enlarge plant production? Ecology 79: 2242–2252.Google Scholar
  26. McNaughton S. J. (1993) Biodiversity and function of grazing ecosystems. In: Biodiversity and Ecosystem Function (eds E-D. Schulze & H. A. Mooney) pp. 361–383. Springer-Verlag, Berlin.Google Scholar
  27. Mittelbach G. G., Steiner C. F., Scheiner S. M., Gross K. L., Reynolds H. L., Waide R. B., Willig M. R., Dodson S. I. & Gough L. (2001) What is the observed relationship between species richness and productivity? Ecology 82: 2381–2396.Google Scholar
  28. Moreau J., Cronberg G., Games I., Hustler K., Kautsky N., Kiibus M., Machena C. & Marshall B. (1997) Biomass flows in Lake Kariba, towards an ecosystems approach. In: Advances in the Ecology of Lake Kariba (ed. J. Moreau) pp. 219–230. University of Zimbabwe Publications, Zimbabwe.Google Scholar
  29. Mulder C. P. H., Koricheva J., Huss-Danell K., Hogberg P. & Joshi J. (1999) Insects affect relationships between plant species richness and ecosystem processes. Ecology Letters 2: 237–246.Google Scholar
  30. Naeem S. (2002) Biodiversity equals instability? Nature 416: 23–24.Google Scholar
  31. Naeem S., Hahn D. R. & Schuurman G. (2000) Producer-decomposer co-dependency influences biodiversity effects. Nature 403: 762–764.Google Scholar
  32. Naeem S., Thompson L. J., Lawler S. P., Lawton J. H. & Woodfin R. M. (1994) Declining biodiversity can alter the performance of ecosystems. Nature 368: 734–737.CrossRefGoogle Scholar
  33. Ortiz M. & Wolff M. (2002) Dynamical simulation of mass-balance trophic models for benthic communities of north-central Chile: assessment of resilience time under alternative management scenarios. Ecological Modelling 148: 277–291.Google Scholar
  34. Pfisterer A. B. & Schmid B. (2002) Diversity-dependent production can decrease the stability of ecosystem functioning. Nature 416: 84–86.Google Scholar
  35. Rutledge R. W., Basore B. L. & Mulholland R. J. (1976) Ecological stability: An information theory viewpoint. Journal of Theoretical Biology 57: 355–371.Google Scholar
  36. Schwartz M. W., Brigham C. A., Hoeksema J. D., Lyons K. G., Mills M. H. & Van Mantgem P. J. (2000) Linking biodiversity to ecosystem function: implications for conservation ecology. Oecologia 122: 297–305.Google Scholar
  37. Simpson E. H. (1949) Measurement of diversity. Nature 163: 688.Google Scholar
  38. Tilman D., Wedin D. & Knops J. (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379: 718–720.CrossRefGoogle Scholar
  39. Van Der Heijden M. G. A., Klironomos J. N., Ursic M., Moutoglis P., Streitwolf-Engel R., Boller T., Wiemken A. & Sanders I. R. (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396: 69–72.CrossRefGoogle Scholar
  40. Wetzel R. G. (1999) Biodiversity and shifting energetic stability within freshwater ecosystems. Archives of Hydrobiology, Special Issues of Advanced Limnology 54: 19–32.Google Scholar

Copyright information

© Ecological Society of Japan 2003

Authors and Affiliations

  1. 1.Faculty of EngineeringShizuoka UniversityHamamatsuJapan
  2. 2.10-604 Ginkakujimae-choSakyo-kuKyotoJapan

Personalised recommendations