Ecological Research

, Volume 17, Issue 4, pp 441–450 | Cite as

Functional domains in soils

  • Patrick Lavelle
Original Article

Soil processes are significantly regulated by biological activities. Soil ecosystem engineers (predominantly termites, earthworms and ants) and roots produce biogenic structures, aggregates or pores that determine the structure and architecture of soil. The sum of structures produced by a population or community of invertebrate engineers creates a specific environment defined here as a functional domain. Functional domains are characterized by (i) the nature and spatial array of the biogenic structures, solid aggregates, mounds or constructs and pores of different shapes or sizes; (ii) the specific communities of smaller organisms from the meso- and microfauna and micro-organisms that they host; and (iii) the spatial and temporal scales at which soil processes operate. The regulation of processes caused by the physical organization of the soil environment and the redistribution of organic resources have been described and quantified in several studies. In soil, the relative importance of regulation imposed by ecosystem engineering is likely to be greater than regulation by trophic relationships because of the specific ecological constraints observed in this environment when compared to above-ground conditions.

Key words

biogenic structures ecosystem engineers food webs soil fauna soil processes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe T. (1995) The Termite-Symbionts System. Kyoto University, Kyoto.Google Scholar
  2. Anderson J. M. (1993) Soil organisms as engineers: microsite modulation of macroscale processes. In: Linking Species and Ecosystems (eds C. G. Jones & J. H. Lawton) pp. 94–106. Chapman & Hall, New York.Google Scholar
  3. Barois I. & Lavelle P. (1986) Changes in respiration rate and some physicochemical properties of a tropical soil during transit through Pontoscolex corethrurus (Glossoscolecidæ, Oligochaeta). Soil Biology and Biochemistry 18: 539–541.CrossRefGoogle Scholar
  4. Barros E., Curmi P., Hallaire V., Chauvel A. & Lavelle P. (2001) The role of macrofauna in the transformation and reversibility of soil structure of an oxisol in the process of forest to pasture conversion. Geoderma 100: 193–213.CrossRefGoogle Scholar
  5. Beare M. H., Coleman D. C., Crossley D. A., Hendrix P. F. & Odum E. P. (1995) A hierarchical approach to evaluating the significance of soil biodiversity to biogeochemical cycling. Plant and Soil 170: 1–18.Google Scholar
  6. Bernier N. & Ponge J. F. (1994) Humus form dynamics during the sylvogenetic cycle in a mountain spruce forest. Soil Biology and Biochemistry 26: 183–220.CrossRefGoogle Scholar
  7. Binet F. & Curmi P. (1992) Structural effects of Lumbricus terrestris (Oligochaeta: Lumbricidae) on the soil-organic matter system: micromorphological observations and autoradiographs. Soil Biology and Biochemistry 24: 1519–1523.CrossRefGoogle Scholar
  8. Blanchart E., Albrecht A., Alegre J., Duboisset A., Pashanasi B., Lavelle P., & Brussaard L. (1999) Effects of earthworms on soil structure and physical properties. In: Earthworm Management in Tropical Agroecosystems (eds P. Lavelle, L. Brussaard & P. Hendrix) pp. 139–162. CAB International, Wallingford.Google Scholar
  9. Blanchart E., Bruand A. & Lavelle P. (1993) The physical structure of casts of Millsonia anomala (Oligochaeta: Megascolecidae) in shrub savanna soils (Côte d’Ivoire). Geoderma 56: 119–132.CrossRefGoogle Scholar
  10. Chauvel A., Grimaldi M., Barros E., Blanchart E., Desjardins T., Sarrazin M. & Lavelle P. (1999) Pasture degradation by an Amazonian earthworm. Nature 389: 32–33.CrossRefGoogle Scholar
  11. Coleman D. C. & Crossley D. A. (1996) Fundamentals of Soil Ecology. Academic Press, San Diego.Google Scholar
  12. Cuendet G. (1979) Etude du comportement alimentaire de la mouette rieuse (Larus ridibundus L.) et de son influence sur les peuplements Lombriciens. Thèse de Doctorat présentée à la Faculté des sciences de l’Université de Lausanne (unpubl.).Google Scholar
  13. Dawkins R. (1982) The Extended Phenotype. The Long Reach of the General. Oxford University Press, Oxford.Google Scholar
  14. De Ruiter P. C., Vanveen J. A., Moore J. C., Brussaard L. & Hunt H. W. (1993) Calculation of nitrogen mineralization in soil food webs. Plant and Soil 157: 263–273.CrossRefGoogle Scholar
  15. Decaëns T. (2000) Degradation dynamics of surface earthworm casts in grasslands of the eastern plains of Colombia. Biology and Fertility of Soil 32: 149–156.CrossRefGoogle Scholar
  16. Decaëns T., Galvin J. H. & Amezquita E. (2001) Propriétés des structures produites par les ingénieurs écologiques à la surface du sol d’une savane colombienne. C.R. Acad. Sci., Life Sciences 324: 465–478.Google Scholar
  17. Decaëns T., Jiménez J. & Lavelle P. (1999) Effect of exclusion of the anecic earthworm Martiodrilus carimaguensis Jiménez and Moreno on soil properties and plant growth in grasslands of the eastern plains of Colombia. Pedobiologia 43: 1–7.Google Scholar
  18. Goss M. J. (1991) Consequences of the activity of roots on soil. In: Plant Root Growth. An Ecological Perspective (ed. D. Atkinson) pp. 171–186. Blackwell, London.Google Scholar
  19. Hanlon R. D. G. & Anderson J. M. (1980) Influence of macroarthropod feeding activities on microflora in decomposing oak leaves. Soil Biology and Biochemistry 12: 255–261.CrossRefGoogle Scholar
  20. Hooper D. U., Bignell D. E., Brown V. K., Brussaard L., Dangerfield J. M., Wall D., Wardle D., Coleman D. C., Giller K., Lavelle P., van der Putten W. H., de Ruiter P., Rusek J., Sala O., Silver W., Tiedje J. & Wolters V. (2000) Interactions between above and below ground biodiversity in terrestrial ecosystems: patterns; mechanisms and feedbacks. BioScience 50: 1049–1061.Google Scholar
  21. Hunt H. W., Coleman D. C., Ingham E. R., Ingham R. E., Elliott E. T., Moore J. C., Rose S. L., Reid C. P. P. & Morley C. R. (1987) The detrital foodweb in a shortgrass prairie. Biology and Fertility of Soil 3: 57.Google Scholar
  22. Ingham E. R., Coleman D. C. & Moore J. C. (1989) An analysis of food-web structure and function in a shortgrass prairie, a mountain meadow, and a lodgepole pine forest. Biology and Fertility of Soil 8: 29–37.Google Scholar
  23. Jansson P. E. & Berg B. (1985) Temporal variation of litter decomposition in relation to simulated soil climate. Long-term decomposition in a Scots pine forest. V. Canadian Journal of Botany 63: 1008–1016.Google Scholar
  24. Jenkinson D. S. (1966) The Priming Action. J. Appl. Radiat. Isotopes pp. 199–208.Google Scholar
  25. Jimenez J. J., Rossi J. P. & Lavelle P. (2001) Spatial distribution of earthworms in natural and disturbed savannas of the eastern plains of Colombia. Applied Soil Ecology 173: 267–278.CrossRefGoogle Scholar
  26. Jones C. G., Lawton J. H. & Shachak M. (1994) Organisms as ecosystem engineers. Oikos 69: 373–386.Google Scholar
  27. Lattaud C., Mora P., Garvin M., Locati S. & Rouland C. (1999) Enzymatic digestive capabilities in geophagous earthworms – origin and activities of cellulolytic enzymes. Pedobiologia 43: 842–850.Google Scholar
  28. Lavelle P. (1984) The soil system in the humid tropics. Biology International 9: 2–15.Google Scholar
  29. Lavelle P., Bignell D. & Lepage M. (1997) Soil function in a changing world: the role of invertebrate ecosystem engineers. European Journal of Soil Biology 33: 159–193.Google Scholar
  30. Lavelle P., Blanchart E., Martin A., Martin S., Spain A., Toutain F., Barois I. & Schaefer R. (1993) A hierarchical model for decomposition in terrestrial ecosystems: application to soils of the humid tropics. Biotropica 25: 130–150.Google Scholar
  31. Lavelle P. & Gilot C. (1994) Priming effects of macroorganisms on microflora: A key process of soil function? In: Beyond the Biomass (eds K. Ritz, J. Dighton & K. Giller) pp. 176–181. Wiley-Sayce, Chichester.Google Scholar
  32. Lavelle P. & Spain A. V. (2001) Soil Ecology. Kluwer Scientific Publications, Amsterdam.Google Scholar
  33. Le Bayon R. C. & Binet F. (1999) Rainfall effects on erosion of earthworm casts and phosphorus transfers by water runoff. Biology and Fertility of Soil 30: 7–13.CrossRefGoogle Scholar
  34. Loranger G., Ponge J. F., Blanchart E. & Lavelle P. (1998) Impact of earthworms on the diversity of microarthropods in a vertisol (Martinique). Biology and Fertility of Soil 27: 21–26.CrossRefGoogle Scholar
  35. Loranger G., Ponge J. F., Imbert D. & Lavelle P. Leaf decomposition in two semi-evergreen tropical forests: influence of litter quality. Biology and Fertility of Soil (in press).Google Scholar
  36. Mando A., Stroosnijder L. & Brussaard L. (1996) Effects of termites on infiltration into crusted soil. Geoderma 74: 107–113.CrossRefGoogle Scholar
  37. Marinissen J. C. Y. & Bok J. (1988) Earthworm-amended soil structure: its influence on Collembola populations in grassland. Pedobiologia 32: 243–252.Google Scholar
  38. Martin A. (1991) Short- and long-term effects of the endogeic earthworm Millsonia anomala (Omodeo) (Megascolecidae, Oligochaeta) of tropical savannas, on soil organic matter. Biology and Fertility of Soil 11: 234–238.CrossRefGoogle Scholar
  39. Nussbaumerr U., Ascher J., Kraft A. & Insam H. (1997) Litter decomposition of a tropical understory species (Ctenanthe lubbersiana) grown under ambient and elevated CO2. Acta Oecologica 18: 377–381.Google Scholar
  40. Poier K. R. & Richter J. (1992) Spatial distribution of earthworms and soil properties in an arable loess soil. Soil Biology and Biochemistry 24: 1601–1608.CrossRefGoogle Scholar
  41. Rossi J. P., Lavelle P. & Albrecht A. (1997) Relationships between spatial patterns of the endogeic earthworm Polypheretima elongata and soil heterogeneity. Soil Biology & Biochemistry 29: 485–488.Google Scholar
  42. Spain A. V. & Le Feuvre R. P. (1987) Breakdown of four litters of contrasting quality in a tropical Australian rainforest. Journal of Applied Ecology 24: 279–288.Google Scholar
  43. Swift M. J., Heal O. W. & Anderson G. M. (1979) Decomposition in Terrestrial Ecosystems. Blackwell Scientific Publications, Oxford.Google Scholar
  44. Trigo D., Martin A. & Lavelle P. (1992) A mutualist system of digestion in temperate earthworms, Allolobophora molleri and Octolasium lacteum. Acta Zoologica Fennici 196: 129–131.Google Scholar
  45. Vannier G. (1987) The porosphere as an ecological medium emphasized in Professor Ghilarov’s work on soil animal adaptations. Biology and Fertility of Soil 3: 39–44.Google Scholar
  46. Villenave C., Charpentier F., Lavelle P., Feller C., Brossard M., Brussaard L., Pashanasi B., Barois I. & Albrecht A. (1999) Effects of earthworms on soil organic matter and nutrient dynamics. In: Management of Tropical Earthworm Activities (eds L. B. P. Lavelle, P. Hendrix, C. Fragoso & B. K. Senapati) pp. 173–197. CAB-International.Google Scholar
  47. Wardle D. & Lavelle P. (1997) Linkages between soil biota, plant litter quality and decomposition. In: Driven by Nature (eds G. Cadisch & K. E. Giller) pp. 107–125. CAB-International, Wallingford.Google Scholar
  48. Zheng D. W., Agren G. I. & Bengtsson J. (1999) How do soil organisms affect total organic nitrogen storage and substrate nitrogen to carbon ratio in soils? A theoretical analysis. Oikos 86: 430–442.Google Scholar

Copyright information

© Ecological Society of Japan 2002

Authors and Affiliations

  1. 1.Laboratoire d’Ecologie des Sols Tropicaux (UMR 137), IRD/University of Paris VIBondyFrance

Personalised recommendations