Ecological Research

, Volume 17, Issue 2, pp 183–194 | Cite as

Prokaryotic and viral diversity patterns in marine plankton

  • Jed A. Fuhrman
  • John F. Griffith
  • Michael S. Schwalbach
Special Issue

Prokaryotes and viruses play critical roles in marine ecosystems, where they are both highly abundant and active. Although early work on both prokaryotes and viruses revealed little of their diversity, molecular biological approaches now allow us to break apart these ‘black boxes.’ The most revealing methods have been cloning and sequencing of 16S rRNA genes, community fingerprinting (such as terminal restriction fragment length polymorphism; TRFLP), and fluorescent in situ hybridization. Viral diversity can now be analyzed by pulsed field gel electrophoresis (PFGE) of viral genomes. The present paper summarizes recent advances in bacterial and virus diversity studies, and presents examples of measurements from polar, tropical, and temperate marine waters. Terminal restriction fragment length polymorphism shows that many of the same operationally defined prokaryotic taxa are present in polar and tropical waters, but there are also some unique to each environment. By one measure, a sample from over a Philippine coral reef had about 100 operationally defined taxa, whereas one from the open tropical Atlantic had about 50 and from the icy Weddell Sea, about 60. Pulsed field gel electrophoresis of two depth profiles, to 500 m, from Southern California, measured 2 months apart, shows striking similarities in viral genome length diversity over time, and some distinct differences with depth. The euphotic zone samples had extremely similar apparent diversity, but samples from 150 m and 500 m were different. An obvious next step is to compare the bacterial and viral diversity patterns, because theory tells us they should be related.

Key words

archaea bacteria fluorescent in situ hybridization pulsed field gel electrophoresis terminal restriction fragment length polymorphism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Ackermann H.-W. & Dubow M. S. (1987) Viruses of Prokaryotes, Vol. 1. General Properties of Bacteriophages. CRC Press, Boca Raton.Google Scholar
  2. Amann R. I., Ludwig W. & Schleifer K. H. (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews 59: 143–169.Google Scholar
  3. Avaniss Aghajani E., Jones K., Chapman D. & Brunk C. (1994) A molecular technique for identification of bacteria using small subunit ribosomal RNA sequences. Biotechniques 17: 144–149.Google Scholar
  4. Azam F., Fenchel T., Gray J. G., Meyer-Reil L. A. & Thingstad T. (1983) The ecological role of water-column microbes in the sea. Marine Ecology Progress Series 10: 257–263.Google Scholar
  5. DeLong E. F. (1998) Everything in moderation: archaea as ‘non-extremophiles’. Current Opinions in Genetics and Development 8: 649–654.CrossRefGoogle Scholar
  6. DeLong E. F., Taylor L. T., Marsh T. L. & Preston C. M. (1999) Visualization and enumeration of marine planktonic archaea and bacteria by using polyribonucleotide probes and fluorescent in situ hybridization. Applied and Environmental Microbiology 65: 5554–5563.Google Scholar
  7. Farrelly V., Rainey F. A. & Stackebrandt E. (1995) Effect of genome size and rrn gene copy number on PCR amplification of 16s rRNA genes from a mixture of bacterial species. Applied and Environmental Microbiology 61: 2798–2801.Google Scholar
  8. Ferguson R. L., Buckley E. N. & Palumbo A. V. (1984) Response of marine bacterioplankton to differential filtration and confinement. Applied and Environmental Microbiology 47: 49–55.Google Scholar
  9. Fuhrman J. A. (1992) Bacterioplankton roles in cycling of organic matter: the microbial food web. In: Primary Productivity and Biogeochemical Cycles in the Sea. (eds P. G. Falkowski & A. D. Woodhead) pp. 361–383. Plenum Press, New York.Google Scholar
  10. Fuhrman J. A. (1999) Marine viruses: biogeochemical and ecological effects. Nature 399: 541–548.CrossRefPubMedGoogle Scholar
  11. Fuhrman J. A. & Azam F. (1982) Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: evaluation and field results. Marine Biology 66: 109–120.CrossRefGoogle Scholar
  12. Fuhrman J. A. & Campbell L. (1998) Marine ecology – Microbial microdiversity. Nature 393: 410–411.CrossRefGoogle Scholar
  13. Fuhrman J. A., Comeau D. E., Hagstrom A. & Chan A. M. (1988) Extraction of DNA suitable for molecular biological studies from natural planktonic microorganisms. Applied and Environmental Microbiology 54: 1426–1429.Google Scholar
  14. Fuhrman J. A., Lee S. H., Masuchi Y., Davis A. A. & Wilcox R. M. (1994) Characterization of marine prokaryotic communities via DNA and RNA. Microbial Ecology 28: 133–145.CrossRefGoogle Scholar
  15. Fuhrman J. A., McCallum K. & Davis A. A. (1992) Novel major archaebacterial group from marine plankton. Nature 356: 148–149.CrossRefPubMedGoogle Scholar
  16. Fuhrman J. A. & Ouverney C. C. (1998) Marine microbial diversity studied via 16S rRNA sequences: cloning results from coastal waters and counting of native archaea with fluorescent single cell probes. Aquatic Ecology 32: 3–15.CrossRefGoogle Scholar
  17. Giovannoni S. J., Britschgi T. B., Moyer C. L. & Field K. G. (1990) Genetic diversity in Sargasso Sea bacterioplankton. Nature 345: 60–63.CrossRefPubMedGoogle Scholar
  18. Gonzalez J. M., Simo R., Massana R.et al. (2000) Bacterial community structure associated with a dimethylsulfoniopropionate-producing North Atlantic algal bloom. Applied and Environmental Microbiology 66: 4237–4246.Google Scholar
  19. Jannasch H. W. & Jones G. E. (1959) Bacterial populations in sea water as determined by different methods of enumeration. Limnology and Oceanography 4: 128–139.Google Scholar
  20. Karner M. B., Delong E. F. & Karl D. M. (2001) Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409: 507–510.CrossRefGoogle Scholar
  21. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L. & Pace N. R. (1985) Rapid determination of 16S rRNA sequences for phylogenetic analysis. Proceedings of the National Academy of Sciences USA 82: 6955–6959.Google Scholar
  22. Lee S. H. & Fuhrman J. A. (1991) Species composition shift of confined bacterioplankton studied at the level of community DNA. Marine Ecology Progress Series 79: 195–201.Google Scholar
  23. Moeseneder M. M., Arrieta J. M., Muyzer G., Winter C. & Herndl G. J. (1999) Optimization of terminal-restriction fragment length polymorphism analysis for complex marine bacterioplankton communities and comparison with denaturing gradient gel electrophoresis. Applied and Environmental Microbiology 65: 3518–3525.Google Scholar
  24. Muyzer G. & Smalla K. (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology 73: 127–141.CrossRefGoogle Scholar
  25. Olsen G. J., Lane D. L., Giovannoni S. J. & Pace N. R. (1986) Microbial ecology and evolution: A ribosomal RNA approach. Annual Reviews of Microbiology 40: 337–365.CrossRefGoogle Scholar
  26. Osborn A. M., Moore E. R. B. & Timmis K. N. (2000) An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environmental Microbiology 2: 39–50.CrossRefGoogle Scholar
  27. Ouverney C. C. (1999) Dissecting the marine bacterioplankton black box by type and function through FISH and STARFISH. PhD Dissertation, Department of Biological Sciences, University of Southern California, Los Angeles.Google Scholar
  28. Ouverney C. C. & Fuhrman J. A. (1997) Increase in fluorescence intensity of 16S rRNA in situ hybridization in natural samples treated with chloramphenicol. Applied and Environmental Microbiology 63: 2735–2740.Google Scholar
  29. Ouverney C. C. & Fuhrman J. A. (1999) Combined microautoradiography-16S rRNA probe technique for determination of radioisotope uptake by specific microbial cell types in situ. Applied and Environmental Microbiology 65: 1746–1752.Google Scholar
  30. Pace N. R. (1997) A molecular view of microbial diversity and the biosphere. Science 276: 734–740.CrossRefGoogle Scholar
  31. Pace N. R., Stahl D. A., Lane D. L. & Olsen G. J. (1986) The analysis of natural microbial populations by rRNA sequences. Advances in Microbial Ecology 9: 1–55.Google Scholar
  32. Steward G. F., Montiel J. L. & Azam F. (2000) Genome size distributions indicate variability and similarities among marine viral assemblages from diverse environments. Limnology and Oceanography 45: 1697–1706.Google Scholar
  33. Valiela I. (1984) Marine Ecological Processes. Springer-Verlag, New York.Google Scholar
  34. Wommack K. E., Ravel J., Hill R. T., Chun J. & Colwell R. R. (1999) Population dynamics of Chesapeake Bay virioplankton: total-community analysis by pulsed-field gel electrophoresis. Applied and Environmental Microbiology 65: 231–240.Google Scholar

Copyright information

© Ecological Society of Japan 2002

Authors and Affiliations

  • Jed A. Fuhrman
    • 1
  • John F. Griffith
    • 1
  • Michael S. Schwalbach
    • 1
  1. 1.Department of Biological Sciences and Wrigley Institute for Environmental StudiesUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations