Advertisement

Ecological Research

, Volume 17, Issue 2, pp 135–142 | Cite as

Nutritional diagnosis of phytoplankton in Lake Baikal

  • Motomi Genkai-KatoEmail author
  • Tatsuki Sekino
  • Takehito Yoshida
  • Hitoshi Miyasaka
  • Tamara V. Khodzher
  • Olga A. Belykh
  • Natalia G. Melnik
  • Zen’ichiro Kawabata
  • Masahiko Higashi
  • Masami Nakanishi
Special Issue

To diagnose the nutritional status of phytoplankton in Lake Baikal, surveys for the determination of concentrations of particulate carbon (PC), nitrogen (PN) and phosphorus (PP) and their ratios were conducted at six stations in March, June, August and October 1999. The concentrations of PC and PN were lower than, and those of PP were similar to, those in another mesotrophic lake except at the station near the mouth of the largest input river, Selenga River, of Lake Baikal. The PC : PN : PP ratio was 102 : 13 : 1, considerably close to the Redfield ratio. The ratio was constant against spatiotemporal changes. These indicate that phytoplankton in Lake Baikal were exposed to no deficiency in nitrogen nor phosphorus. From a viewpoint of the nutritional status of phytoplankton, Lake Baikal might be viewed as an ocean rather than as a lake.

Key words

Lake Baikal nutrient deficiency phytoplankton Redfield ratio 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Aizaki M. & Otsuki A. (1987) Characteristics of variations of C : N : P : Chl ratios of seston in eutrophic shallow Lake Kasumigaura. Japanese Journal of Limnology 48: S99–S106.Google Scholar
  2. Bondarenko N. A., Guselnikova N. E., Logacheva N. F. & Pomazkina G. V. (1996) Spatial distribution of phytoplankton in Lake Baikal, Spring 1991. Freshwater Biology 35: 517–523.Google Scholar
  3. Goldman C. R., Elser J. J., Richards R. C., Reuter J. E., Priscu J. C. & Levin A. L. (1996) Thermal stratification, nutrient dynamics, and phytoplankton productivity during the onset of spring phytoplankton growth in Lake Baikal, Russia. Hydrobiologia 331: 9–24.CrossRefGoogle Scholar
  4. Goldman J. C., McCarthy J. J. & Peavey D. G. (1979) Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature 279: 210–215.Google Scholar
  5. Guildford S. J. & Hecky R. E. (2000) Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: Is there a common relationship? Limnology and Oceanography 45: 1213–1223.Google Scholar
  6. Healey F. P. & Hendzel L. L. (1980) Physiological indicators of nutrient deficiency in lake phytoplankton. Canadian Journal of Fisheries and Aquatic Sciences 37: 442–453.Google Scholar
  7. Hecky R. E., Campbell P. & Hendzel L. L. (1993) The stoichiometry of carbon, nitrogen, and phosphorus in particulate matter of lakes and oceans. Limnology and Oceanography 38: 709–724.Google Scholar
  8. Kozhov M. (1963) Lake Baikal and its Life. Dr W. Junk Publishers, The Hague.Google Scholar
  9. Kozhova O. M. (1987) Phytoplankton of Lake Baikal: structural and functional characteristics. Archiv für Hydrobiologie. Beihefte, Ergebnisse der Limnologie 25: 19–37.Google Scholar
  10. Leibold M. A. (1989) Resource edibility and the effects of predators and productivity on the outcome of trophic interactions. American Naturalist 134: 922–949.CrossRefGoogle Scholar
  11. Leibold M. A. (1996) A graphical model of keystone predators in food webs: trophic regulation of abundance, incidence, and diversity patterns in communities. American Naturalist 147: 784–812.CrossRefGoogle Scholar
  12. Menzel D. W. & Corwin N. (1965) The determination of total phosphorus in seawater based on the liberation of organically bound fraction by persulfate oxidation. Limnology and Oceanography 10: 280–283.Google Scholar
  13. Nagata T., Takai K., Kawanobe K. et al. (1994) Autotrophic picoplankton in southern Lake Baikal: abundance, growth and grazing mortality during summer. Journal of Plankton Research 16: 945–959.Google Scholar
  14. Nakanishi M., Mitamura O. & Matsubara T. (1990) Sestonic C:N:P ratios in the southern basin of Lake Biwa with special attention to nutritional state of phytoplankton. Japanese Journal of Limnology 51: 185–189.Google Scholar
  15. Phillips O. M. (1974) The equilibrium and stability of simple marine systems. II. Herbivores. Archiv für Hydrobiologie 73: 310–333.Google Scholar
  16. Redfield A. C. (1958) The biological control of chemical factors in the environment. American Scientist 46: 205–221.Google Scholar
  17. Shostakovich V. B. (1924) Water transparency of Lake Baikal. Notes of Russian Hydrological Institute, Leningrad 11: 85–87 (in Russian).Google Scholar
  18. Tezuka Y. (1985) C:N:P ratios of seston in Lake Biwa as indicators of nutrient deficiency in phytoplankton and decomposition process of hypolimnetic particulate matter. Japanese Journal of Limnology 46: 239–246.Google Scholar
  19. Timoshkin O. A. (1997) Biodiversity of Baikal fauna: state-of-the-art (Preliminary analysis). In: New Scope on the Boreal Ecosystems in East Siberia. (ed. E. Wada, O. A. Timoshkin, N. Fujita & K. Tanida) pp. 35–76. Russian Academy of Sciences, Siberian Branch, Novosibirsk.Google Scholar
  20. Vance R. R. (1978) Predation and resource partitioning in one predator–two prey model communities. American Naturalist 112: 797–813.CrossRefGoogle Scholar

Copyright information

© Ecological Society of Japan 2002

Authors and Affiliations

  • Motomi Genkai-Kato
    • 1
    Email author
  • Tatsuki Sekino
    • 1
  • Takehito Yoshida
    • 1
  • Hitoshi Miyasaka
    • 1
  • Tamara V. Khodzher
    • 2
  • Olga A. Belykh
    • 2
  • Natalia G. Melnik
    • 2
  • Zen’ichiro Kawabata
    • 1
  • Masahiko Higashi
    • 1
  • Masami Nakanishi
    • 1
  1. 1.Center for Ecological ResearchKyoto UniversityOtsuShigaJapan
  2. 2.Limnological Institute, Siberian Division of the Russian Academy of SciencesIrkutskRussia

Personalised recommendations