Ecological Research

, Volume 15, Issue 2, pp 187–192

Effects of seed aggregation on the removal rates of elaiosome-bearing Chelidonium majus and Viola odourata seeds carried by Formica polyctena ants

Original Articles

In a field dominated by Formica polyctena Foerst. ants, we examined the effect of seed aggregation on the seed-removal rates of two plant species: a large-seeded obligate myrmecochore Viola odorata L. and a small-seeded diplochore Chelidonium majus L., which was autochorous as well as myrmecochorous. The effect was statistically non-significant in V. odorata but significant in C. majus, with more closely aggregated seeds having higher removal rates. The large seeds of the obligate myrmecochore were more quickly discovered and repeatedly removed by ant workers than were the small seeds of the diplochore.

Key words

ants Formica polyctena myrmecochory seed aggregation seed dispersal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beattie A. J. (1983) Distribution of ant-dispersed plants. Sonderblatt der Naturwissenschafteichen Vereins in Hamburg 7: 249–270.Google Scholar
  2. Beattie A. & Lyons N. (1975) Seed dispersal in Viola: Adaptations and strategies. American Journal of Botany 62: 714–722.Google Scholar
  3. Berg R. Y. (1966) Seed dispersal of Dendromecon: Its ecologic, evolutionary, and taxonomic significance. American Journal of Botany 53: 61–73.Google Scholar
  4. Berg R. Y. (1969) Adaptation and evolution in Dicentra (Fumariaceae), with special reference to seed, fruit, and dispersal mechanism. NYTT Magazine of Botany 16: 49–75.Google Scholar
  5. Bisseau de J. C. & Pasteels J. M. (1994) Regulated food recruitment through individual behavior of scouts in the ant, Myrmica sabuleti (Hymenoptera: Formicidae). Journal of Insect Behavior 7: 767–777.Google Scholar
  6. Bresinsky A. (1963) Bau, entwicklungsgeschichte und inhaltsstoffe der elaiosomen. Biblitheca Botanika 126: 1–54.Google Scholar
  7. Davidson D. W. & Morton S. R. (1984) Dispersal adaptations of some Acacia species in the Australian arid zone. Ecology 65: 1038–1051.Google Scholar
  8. Gorb O. V. (1998) Seed morphology and seed dispersal in two Corydalis species. Ukranian Botany Journal 55: 62–66.Google Scholar
  9. Gorb S. N. & Gorb E. V. (1995) Removal rates of seeds of five myrmecochorous plants by the ant Formica polyctena (Hymenoptera: Formicidae). Oikos 73: 367–374.Google Scholar
  10. Gorb E. V. & Gorb S. N. (1998) Myrmecochory in deciduous forest: Effects of ant foraging strategies on seed removal. In: Ants and Forest Protection; Proceedings of the 10th Russian Myrmecological Symposium, Moscow 24–28 August 1998, pp. 91–94. Nauka, Moskow (in Russian, with an English Summary).Google Scholar
  11. Gorb S. N. & Gorb E. V. (1999) Dropping rates of elaiosome-bearing seeds during transport by ants Formica polyctena Foerst. implications for distance dispersal. Acta Oecologica 20: 510–518.Google Scholar
  12. Gunther R. W. & Lanza J. (1989) Variation in attractiveness of Trillium diaspores to a seed dispersing ant. American Midland Naturalist 122: 321–328.Google Scholar
  13. Higashi S. & Ito F. (1991) Ground beetles and seed dispersal of the myrmecochorous plant Trillium tschonoskii (Trilliacae). In: Ant–Plant Interactions (eds C. R. Huxley & D. F. Cutler) pp. 486–492. Oxford University Press, Oxford.Google Scholar
  14. Hughes L. & Westoby M. (1990) Removal rates of seeds adapted for dispersal by ants. Ecology 71: 138–148.Google Scholar
  15. Hughes L., Westoby M., Jurado E. (1994) Convergence of elaiosomes and insect prey: Evidence from ant foraging behaviour and fatty acid composition. Functional Ecology 8: 358–365.Google Scholar
  16. Kaspari M. (1993) Removal of seeds from neotropical frugivore droppings: Ant responses to seed number. Oecologia 95: 81–88.Google Scholar
  17. Kjellsson G. (1985) Seed fate in a population of Carex pilulifera L. I. Seed dispersal and ant seed mutualism. Oecologia 67: 416–423.Google Scholar
  18. Mark S. & Olesen J. M. (1996) Importance of elaiosome size to removal of ant-dispersed seeds. Oecologia 107: 95–101.Google Scholar
  19. Marshall D. L., Beattie A. J., Bollenbacher W. E. (1979) Evidence for diglycerides as attractants in an ant–seed interaction. Journal of Chemical Ecology 5: 335–344.Google Scholar
  20. Nordhagen R. (1959) Remarks on some new or little known myrmecochorous plants from North America and East Asia. Bulletin of the Research Council of Israel, Section D, Botany 7: 184–201.Google Scholar
  21. O’Dowd D. J. & Hay M. E. (1980) Mutualism between harvester ants and a desert ephemeral: Seed escape from rodents. Ecology 61: 531–540.Google Scholar
  22. Ohara M. & Higashi S. (1987) Interference by ground beetles with the dispersal by ants of seeds of Trillium species (Liliaceae). Journal of Ecology 75: 1091–1098.Google Scholar
  23. Ohkawara K. & Higashi S. (1994) Relative importance of ballistic and ant dispersal in two diplochorous Viola species (Violaceae). Oecologia 100: 135–140.Google Scholar
  24. Ohkawara K., Ohara M., Higashi S. (1997) The evolution of ant-dispersal in a spring-ephemeral Corydalis ambigua (Papaveraceae): Timing of seed-fall and effects of ants and ground beetles. Ecography 20: 217–223.Google Scholar
  25. Oostermeijer J. G. B. (1989) Myrmecochory in Polygala vulgaris L., Luzula campestris (L.) D.C. & Viola curtisii Forster in a Dutch dune area. Oecologia 78: 302–311.Google Scholar
  26. Roth I. (1977) Fruits of Angiosperms. Gebrüder Borntraeger, Berlin, Stuttgart.Google Scholar
  27. Sernander R. (1906). Entwurf einer monographie der Europaischen myrmecochoren. Kungliga Svenska Vetenskapsacademiens Handlingar 41: 1–410.Google Scholar
  28. Turnbull C. L. & Culver D. C. (1983) The timing of seed dispersal in Viola nuttallii: Attraction of dispersers and avoidance of predators. Oecologia 59: 360–365.Google Scholar
  29. Werker E. (1997) Seed anatomy. Gebrüder Borntraeger, Berlin, Stuttgart.Google Scholar

Copyright information

© Blackwell Science Asia Pty. Ltd. 2000

Authors and Affiliations

  1. 1.Department of BotanyKiev UniversityKievUkraine
  2. 2.Schmalhausen Institute of ZoologyKievUkraine
  3. 3.Max Planck Institut für EntwicklungsbiologieTübingenGermany

Personalised recommendations