Skip to main content
Log in

Microwave-assisted synthesis of 3D Bi2MoO6 microspheres with oxygen vacancies for enhanced visible-light photocatalytic activity

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Oxygen vacancies (OVs) defects in metal oxide-based photocatalysts play a crucial role in improving the charge carrier separation efficiencies to enhance the photocatalytic performances. In this work, OVs were introduced in 3D Bi2MoO6 microspheres through a facile and fast microwave-assisted method via the modulation of tetramethylethylenediamine (TMEDA). EPR, Raman and XPS results demonstrated that large amounts of oxygen vacancies were formed on the surface of BMO microspheres. The photocatalytic properties of the samples were studied by degradation of tetracycline (TC) under visible light. The optimal Bi2MoO6 with OVs exhibited optimum photocatalytic activity, and the degradation rate was 7.0 times higher than that of pristine Bi2MoO6. This enhancement can be attributed to the 3D structure furnishing more surface active sites and suitable OVs defects favoring the electron–hole separation. Moreover, the defective Bi2MoO6 microspheres exhibit high stability because the photocatalytic activity remains almost unchanged after 5 cycles, making them favorable for practical applications. Finally, a possible visible light photocatalysis mechanism for the degradation of TC was tentatively proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Trovo, R. F. P. Nogueira, A. Agüera, A. R. Fernandez-Alba, and S. Malato, Corrigendum to “Degradation of the antibiotic amoxicillin by photo-Fenton process–Chemical and toxicological assessment”, Water Res., 2011, 45, 1394–1402

    CAS  PubMed  Google Scholar 

  2. X. H. Liu, Y. Liu, S. Y. Lu, X. C. Guo, H. B. Lu, P. Qin, B. Bi, Z. F. Wan, B. D. Xi, and T. T. Zhang, Occurrence of typical antibiotics and source analysis based on PCA-MLR model in the East Dongting Lake, China, Ecotoxicol. Environ. Saf., 2018, 163, 145–152

    CAS  PubMed  Google Scholar 

  3. C. I. Brinzila, N. Monteiro, M. J. Pacheco, L. Ciríaco, I. Siminiceanu, and A. Lopes, Degradation of tetracycline at a boron-doped diamond anode: influence of initial pH, applied current intensity and electrolyte, Environ. Sci. Pollut. Res., 2014, 21, 8457–8465

    CAS  Google Scholar 

  4. O. Hanay, B. Yıldız, S. Aslan, and H. Hasar, Removal of tetracycline and oxytetracycline by microscale zerovalent iron and formation of transformation products, Environ. Sci. Pollut. Res., 2014, 21, 3774–3782

    CAS  Google Scholar 

  5. T. H. Xu, R. J. Zou, X. F. Lei, X. M. Qi, Q. Wu, W. F. Yao, and Q. J. Xu, New and stable g-C3N4/HAp composites as highly efficient photocatalysts for tetracycline fast degradation, Appl. Catal., B, 2019, 245, 662–671

    CAS  Google Scholar 

  6. L. Shao, Z. M. Ren, G. S. Zhang, and L. L. Chen, Facile synthesis, characterization of a MnFe2O4/activated carbon magnetic composite and its effectiveness in tetracycline removal, Mater. Chem. Phys., 2012, 135, 16–24

    CAS  Google Scholar 

  7. Z. Y. Lu, J. Y. Peng, M. S. Song, Y. Liu, X. L. Liu, P. W. Huo, H. J. Dong, S. Q. Yuan, Z. F. Ma, and S. Han, Improved recyclability and selectivity of environment-friendly MFA-based heterojunction imprinted photocatalyst for secondary pollution free tetracycline orientation degradation, Chem. Eng. J., 2019, 360, 1262–1276

    CAS  Google Scholar 

  8. Q. F. Wu, Z. H. Li, and H. L. Hong, Adsorption of the quinolone antibiotic nalidixic acid onto montmorillonite and kaolinite, Appl. Clay Sci., 2013, 74, 66–73

    CAS  Google Scholar 

  9. D. L. Jiang, X. Peng, L. Q. Shao, L. Di, and C. Min, RGO-promoted all-solid-state g-C3N4/BiVO4 Z-scheme heterostructure with enhanced photocatalytic activity toward the degradation of antibiotics, Ind. Eng. Chem. Res., 2017, 56, 8823–8832

    CAS  Google Scholar 

  10. X. Yan, X. Y. Wang, W. Gu, M. M. Wu, Y. Yan, B. Hu, G. B. Che, D. L. Han, J. H. Yang, and W. Q. Fan, Single-crystalline AgIn(MoO4)2 nanosheets grafted Ag/AgBr composites with enhanced plasmonic photocatalytic activity for degradation of tetracycline under visible light, Appl. Catal., B, 2015, 164, 297–304

    CAS  Google Scholar 

  11. H. Zhou, K. Kalware, M. Shen, S. T. Zhong, and Y. F. Yao, Formamide-assisted one-step synthesis of BiOCOOH and Bi/BiOCOOH micro-/nanostructures with tunable morphologies and composition and their photocatalytic activities, CrystEngComm, 2020, 22, 1368–1380

    CAS  Google Scholar 

  12. F. Guo, M. Y. Li, H. J. Ren, X. L. Huang, W. X. Hou, C. Wang, W. L. Shi, and C. Y. Lu, Fabrication of pn CuBi2O4/MoS2 heterojunction with nanosheets-on-microrods structure for enhanced photocatalytic activity towards tetracycline degradation, Appl. Surf. Sci., 2019, 491, 88–94

    CAS  Google Scholar 

  13. S. Kumar, A. Baruah, S. Tonda, B. Kumar, V. Shanker, and B. Sreedhar, Cost-effective and eco-friendly synthesis of novel and stable N-doped ZnO/g-C3N4 core–shell nanoplates with excellent visible-light responsive photocatalysis, Nanoscale, 2014, 6, 4830–4842

    CAS  PubMed  Google Scholar 

  14. F. Guo, M. Y. Li, H. J. Ren, X. L. Huang, K. K. Shu, W. L. Shi, and C. Y. Lu, Facile bottom-up preparation of Cl-doped porous g-C3N4 nanosheets for enhanced photocatalytic degradation of tetracycline under visible light, Sep. Purif. Technol., 2019, 228, 115770

    CAS  Google Scholar 

  15. L. Y. Zhang, T. G. Xu, X. Zhao, and Y. F. Zhu, Controllable synthesis of Bi2MoO6 and effect of morphology and variation in local structure on photocatalytic activities, Appl. Catal., B, 2010, 98, 138–146

    CAS  Google Scholar 

  16. S. Y. Wang, X. Ding, N. Yang, G. M. Zhan, X. H. Zhang, G. H. Dong, L. Z. Zhang, and H. Chen, Insight into the effect of bromine on facet-dependent surface oxygen vacancies construction and stabilization of Bi2MoO6 for efficient photocatalytic NO removal, Appl. Catal., B, 2020, 265, 118585

    Google Scholar 

  17. Z. Dai, F. Qin, H. P. Zhao, J. Ding, Y. L. Liu, and R. Chen, Crystal defect engineering of aurivillius Bi2MoO6 by Ce doping for increased reactive species production in photocatalysis, ACS Catal., 2016, 6, 3180–3192

    CAS  Google Scholar 

  18. L. Guo, Q. Zhao, H. D. Shen, X. X. Han, K. L. Zhang, D. J. Wang, F. Fu, and B. Xu, Ultrafine Au nanoparticles anchored on Bi2MoO6 with abundant surface oxygen vacancies for efficient oxygen molecule activation, Catal. Sci. Technol., 2019, 9, 3193–3202

    CAS  Google Scholar 

  19. J. J. Zhang, T. Wang, X. X. Chang, A. Li, and J. L. Gong, Fabrication of porous nanoflake BiMOx (M = W, V, and Mo) photoanodes via hydrothermal anion exchange, Chem. Sci., 2016, 7, 6381–6386

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Z. W. Zhao, W. D. Zhang, Y. X. Sun, J. Y. Yu, Y. X. Zhang, H. Wang, F. Dong, and Z. B. Wu, Bi cocatalyst/Bi2MoO6 microspheres nanohybrid with SPR-promoted visible-light photocatalysis, J. Phys. Chem. C, 2016, 120, 11889–11898

    CAS  Google Scholar 

  21. J. L. Long, S. C. Wang, H. J. Chang, B. Z. Zhao, B. T. Liu, Y. G. Zhou, W. Wei, X. X. Wang, L. Huang, and W. Huang, Bi2MoO6 nanobelts for crystal facet-enhanced photocatalysis, Small, 2014, 10, 2791–2795

    CAS  PubMed  Google Scholar 

  22. X. Ding, K. Zhao, and L. Z. Zhang, Enhanced photocatalytic removal of sodium pentachlorophenate with self-doped Bi2WO6 under visible light by generating more superoxide ions, Environ. Sci. Technol., 2014, 48, 5823–5831

    CAS  PubMed  Google Scholar 

  23. Y. C. Hao, X. L. Dong, X. Y. Wang, S. R. Zhai, H. C. Ma, and X. F. Zhang, Controllable, electrostatic self-assembly of sub-3 nm graphene quantum dots incorporated into mesoporous Bi2MoO6 frameworks: efficient physical and chemical simultaneous co-catalysis for photocatalytic oxidation, J. Mater. Chem. A, 2016, 4, 8298–8307

    CAS  Google Scholar 

  24. J. G. Hou, S. Y. Cao, Y. Z. Wu, F. Liang, Y. F. Sun, Z. S. Lin, and L. C. Sun, Simultaneously efficient light absorption and charge transport of phosphate and oxygen-vacancy confined in bismuth tungstate atomic layers triggering robust solar CO2 reduction, Nano Energy, 2017, 32, 359–366

    CAS  Google Scholar 

  25. X. Xu, X. Ding, X. L. Yang, P. Wang, S. Li, Z. X. Lu, and H. Chen, Oxygen vacancy boosted photocatalytic decomposition of ciprofloxacin over Bi2MoO6: Oxygen vacancy engineering, biotoxicity evaluation and mechanism study, J. Hazard. Mater., 2019, 364, 691–699

    CAS  PubMed  Google Scholar 

  26. Y. Chen, W. Y. Yang, S. Gao, C. X. Sun, and Q. Li, Synthesis of Bi2MoO6 nanosheets with rich oxygen vacancies by postsynthesis etching treatment for enhanced photocatalytic performance, ACS Appl. Nano Mater., 2018, 1, 3565–3578

    CAS  Google Scholar 

  27. W. T. Bi, C. M. Ye, C. Xiao, W. Tong, X. D. Zhang, W. Shao, and Y. Xie, Spatial location engineering of oxygen vacancies for optimized photocatalytic H2 evolution activity, Small, 2014, 10, 2820–2825

    CAS  PubMed  Google Scholar 

  28. Y. H. Lv, Y. F. Liu, Y. Y. Zhu, and Y. F. Zhu, Surface oxygen vacancy induced photocatalytic performance enhancement of a BiPO4 nanorod, J. Mater. Chem. A, 2014, 2, 1174–1182

    CAS  Google Scholar 

  29. Y. S. Li, Z. L. Tang, J. Y. Zhang, and Z. T. Zhang, Defect engineering of air-treated WO3 and its enhanced visible-light-driven photocatalytic and electrochemical performance, J. Phys. Chem. C, 2016, 120, 9750–9763

    CAS  Google Scholar 

  30. Y. H. Lv, C. S. Pan, X. G. Ma, R. L. Zong, X. J. Bai, and Y. F. Zhu, Production of visible activity and UV performance enhancement of ZnO photocatalyst via vacuum deoxidation, Appl. Catal., B, 2013, 138, 26–32

    Google Scholar 

  31. X. Y. Pan, M. Q. Yang, X. Z. Fu, N. Zhang, and Y. J. Xu, Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications, Nanoscale, 2013, 5, 3601–3614

    CAS  PubMed  Google Scholar 

  32. F. C. Lei, Y. F. Sun, K. T. Liu, S. Gao, L. Liang, B. C. Pan, and Y. Xie, Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting, J. Am. Chem. Soc., 2014, 136, 6826–6829

    CAS  PubMed  Google Scholar 

  33. D. J. Wang, H. D. Shen, L. Guo, C. Wang, F. Fu, and Y. C. Liang, Ag/Bi2MoO6-x with enhanced visible-light-responsive photocatalytic activities via the synergistic effect of surface oxygen vacancies and surface plasmon, Appl. Surf. Sci., 2018, 436, 536–547

    CAS  Google Scholar 

  34. Y. J. Sun, H. Wang, Q. Xing, W. Cui, J. Y. Li, S. J. Wu, and L. D. Sun, The pivotal effects of oxygen vacancy on Bi2MoO6: Promoted visible light photocatalytic activity and reaction mechanism, Chin. J. Catal., 2019, 40, 647–655

    CAS  Google Scholar 

  35. H. D. Li, W. J. Li, S. N. Gu, F. Z. Wang, X. T. Liu, and C. J. Ren, Forming oxygen vacancies inside in lutetium-doped Bi2MoO6 nanosheets for enhanced visible-light photocatalytic activity, Mol. Catal., 2017, 433, 301–312

    CAS  Google Scholar 

  36. J. H. Guo, L. Shi, J. Y. Zhao, Y. Wang, K. B. Tang, W. Q. Zhang, C. Z. Xie, and X. Y. Yuan, Enhanced visible-light photocatalytic activity of Bi2MoO6 nanoplates with heterogeneous Bi2MoO6-x@ Bi2MoO6 core-shell structure, Appl. Catal., B, 2018, 224, 692–704

    CAS  Google Scholar 

  37. I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara, and K. Takeuchi, Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal, J. Mol. Catal. A: Chem., 2000, 161, 205–212

    CAS  Google Scholar 

  38. Y. H. Lv, W. Q. Yao, R. L. Zong, and Y. F. Zhu, Fabrication of wide-range-visible photocatalyst Bi2WO6−x nanoplates via surface oxygen vacancies, Sci. Rep., 2016, 6, 19347

    CAS  PubMed  PubMed Central  Google Scholar 

  39. M. Y. Zhang, C. L. Shao, J. B. Mu, X. M. Huang, Z. Y. Zhang, Z. C. Guo, P. Zhang, and Y. C. Liu, Hierarchical heterostructures of Bi2MoO6 on carbon nanofibers: controllable solvothermal fabrication and enhanced visible photocatalytic properties, J. Mater. Chem., 2012, 22, 577–584

    CAS  Google Scholar 

  40. H. W. Du, T. Wan, B. Qu, J. Scott, X. Lin, A. Younis, and D. W. Chu, Tailoring the multi-functionalities of one-dimensional ceria nanostructures via oxygen vacancy modulation, J. Colloid Interface Sci., 2017, 504, 305–314

    CAS  PubMed  Google Scholar 

  41. H. D. Shen, W. W. Xue, F. Fu, J. F. Sun, Y. Z. Zhen, D. J. Wang, B. Shao, and J. W. Tang, Efficient Degradation of Phenol and 4-Nitrophenol by Surface Oxygen Vacancies and Plasmonic Silver Co-Modified Bi2MoO6 Photocatalysts, Chem.–Eur. J., 2018, 24, 18463–18478

    CAS  PubMed  Google Scholar 

  42. J. F. Zhang, Y. F. Hu, X. L. Jiang, S. F. Chen, S. G. Meng, and X. L. Fu, Design of a direct Z-scheme photocatalyst: preparation and characterization of Bi2O3/g-C3N4 with high visible light activity, J. Hazard. Mater., 2014, 280, 713–722

    CAS  PubMed  Google Scholar 

  43. J. N. Zhang, D. Y. Leng, L. Z. Zhang, G. Li, F. Ma, J. Z. Gao, H. B. Lu, and B. P. Zhu, Porosity and oxygen vacancy engineering of mesoporous WO3 nanofibers for fast and sensitive low-temperature NO2 sensing, J. Alloys Compd., 2021, 853, 157339

    CAS  Google Scholar 

  44. Y. J. Cai, D. Y. Li, J. Y. Sun, M. D. Chen, Y. R. Li, Z. W. Zou, H. Zhang, H. M. Xu, and D. S. Xia, Synthesis of BiOCl nanosheets with oxygen vacancies for the improved photocatalytic properties, Appl. Surf. Sci., 2018, 439, 697–704

    CAS  Google Scholar 

  45. Y. J. Lin, S. Zhou, X. H. Liu, S. Sheehan, and D. W. Wang, TiO2/TiSi2 heterostructures for high-efficiency photoelectrochemical H2O splitting, J. Am. Chem. Soc., 2009, 131, 2772–2773

    CAS  PubMed  Google Scholar 

  46. Y. L. Feng, Z. S. Zhang, K. Zhao, S. L. Lin, H. Li, and X. Gao, Photocatalytic nitrogen fixation: Oxygen vacancy modified novel micro-nanosheet structure Bi2O2CO3 with band gap engineering, J. Colloid Interface Sci., 2021, 583, 499–509

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Ma, S., Zong, Y. et al. Microwave-assisted synthesis of 3D Bi2MoO6 microspheres with oxygen vacancies for enhanced visible-light photocatalytic activity. Photochem Photobiol Sci 19, 1697–1706 (2020). https://doi.org/10.1039/d0pp00247j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/d0pp00247j

Navigation