Skip to main content
Log in

Radical anion formation exhibiting “turn-on” fluorescence sensing of hydrazine using a naphthalene diimide (NDI) derivative with a donor-acceptor-donor (D-A-D) molecular structure

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

In this paper, the synthesis of a naphthalene diimide (NDI) derivative with a donor-acceptor-donor (D-A-D) molecular structure substituted with a long alkyl chain (12 carbons) containing naphthalene hydrazide at the imide position is reported. The reduced emission quantum yield (ϕf = 0.01–0.03) of the NDI derivative in various solvents indicates the perturbation of the electronic state of π-electron deficient NDI (A) by the peripheral naphthalene (D) units. The investigation of the influence of the alkyl chain and naphthalene substituent on the self-assembling properties of the NDI derivative reveals an isodesmic mode of self-assembly in a chloroform/methylcyclohexane (CHCl3/MCH, 1:9, v/v) mixture. The self-assembling nature of the NDI derivative also results in the formation of an organogel in the CHCl3/MCH (1:9, v/v) mixture, and gel formation is well-comprehended by techniques such as P-XRD, rheological studies, and FT-IR measurements. Furthermore, radical anion (NDI?) formation of π-acidic NDI was used as a sensing tool for hydrazine by a fluorescence “turn-on” (ϕf = 0.12) method in the solution (DMSO), film, and gel state with a detection limit of 284.1 ppb in DMSO and 32 ppb in the gel state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. J. K. Niemeier and D. P. Kjell, Hydrazine and Aqueous Hydrazine Solutions: Evaluating Safety in Chemical Processes, Org. Process Res. Dev. 2013 17 1580–1590

    Article  CAS  Google Scholar 

  2. S. Goswami, S. Das, K. Aich, B. Pakhira, S. Panja, S. K. Mukherjee and S. Sarkar, A Chemodosimeter for the Ratiometric Detection of Hydrazine Based on Return of ESIPT and Its Application in Live-Cell Imaging, Org. Lett. 2013 15 5412–5415

    Article  CAS  PubMed  Google Scholar 

  3. Z. Zhao, G. Zhang, Y. Gao, X. Yang and Y. Li, A novel detection technique of hydrazine hydrate: modality change of hydrogen bonding-induced rapid and ultrasensitive colorimetric assay, Chem. Commun. 2011 47 12816–12818

    Article  CAS  Google Scholar 

  4. M. H. Lee, B. Yoon, J. S. Kim and J. L. Sessler, Naphthalimide trifluoroacetyl acetonate: a hydrazineselective chemodosimetric sensor, Chem. Sci. 2013 4 4121–4126

    Article  CAS  Google Scholar 

  5. M. Sun, J. Guo, Q. Yang, N. Xiao and Y. Li, A new fluorescent and colorimetric sensor for hydrazine and its application in biological systems, J. Mater. Chem. B 2014 2 1846–1851

    Article  CAS  PubMed  Google Scholar 

  6. Y. Jung, I. G. Ju, Y. H. Choe, Y. Kim, S. Park, Y. M. Hyun, M. S. Oh and D. Kim, Hydrazine Expose: The Next-Generation Fluorescent Probe, ACS Sens. 2019 4 441–449

    Article  CAS  PubMed  Google Scholar 

  7. Y. Xu, H. Li, X. Wu, Y. Chen, H. Hang, H. Tong and L. Wang, Fluorescence fiber-optic turn-on detection of trace hydrazine vapor with dicyanovinyl-functionalized triazatruxene-based hyperbranched conjugated polymer nanoparticles, Polym. Chem. 2017 8 2484–2489

    Article  CAS  Google Scholar 

  8. X. Shia, C. Yin, Y. Zhang, Y. Wen and F. Huo, A novel ratiometric and colorimetric fluorescent probe for hydrazine based on ring-opening reaction and its applications, Sens. Actuators, B 2019 285 368–374

    Article  CAS  Google Scholar 

  9. Y. Zhang, Y. Huang, Y. Yue, J. Chao, F. Huo and C. Yin, A compact fluorescent probe based on o-phthalaldehyde for ultrasensitive detection of hydrazine in gas and solution phases, Sens. Actuators, B 2018 273 944–950

    Article  CAS  Google Scholar 

  10. X. Shi, C. Yin, Y. Wen, Y. Zhang and F. Huo, A Probe with Double Acetoxyl Moieties for Hydrazine and its Application in Living Cells, Spectrochim. Acta, Part A 2018 203 106–111

    Article  CAS  Google Scholar 

  11. W. Zhang, F. Huo, T. Liua and C. Yin, Ratiometric fluorescence probe for hydrazine vapor detection and biological imaging, J. Mater. Chem. B 2018 6 8085–8089

    Article  CAS  PubMed  Google Scholar 

  12. X. Shi, F. Huo, J. Chao and C. Yin, A ratiometric fluorescent probe for hydrazine based on novel cyclization mechanism and its application in living cells, Sens. Actuators, B 2018 260 609–616

    Article  CAS  Google Scholar 

  13. X.- Y. Zhang, Y.-S. Yang, W. Wang, Q.-C. Jiao and H.-L. Zhu, Fluorescent sensors for the detection of hydrazine in environmental and biological systems: Recent advances and future prospects, Coord. Chem. Rev. 2020 417 213367

    Article  CAS  Google Scholar 

  14. K. H. Nguyen, Y. Hao, W. Chen, Y. Zhang, M. Xu, M. Yang and Y.-N. Liu, Recent progress in the development of fluorescent probes for hydrazine, Luminescence 2018 33 816–836

    Article  PubMed  Google Scholar 

  15. Y. Y. Tang, C. L. Kao and P. Y. Chen, Electrochemical detection of hydrazine using a highly sensitive nanoporaous gold electrode, Anal. Chim. Acta 2012 711 32–39

    Article  CAS  PubMed  Google Scholar 

  16. M. Al Kobaisi, S. V. Bhosale, K. Latham, A. M. Raynor and S. V. Bhosale, Functional Naphthalene Diimides: Synthesis, Properties, and Applications, Chem. Rev. 2016 116 11685–11796

    Article  CAS  Google Scholar 

  17. S. V. Bhosale, S. V. Bhosale, M. B. Kalyankar and S. J. Langford, A Core-Substituted Naphthalene Diimide Fluoride Sensor, Org. Lett. 2009 11 5418–5421

    Article  CAS  PubMed  Google Scholar 

  18. H. F. Higginbotham, R. P. Cox, S. Sandanayake, B. A. Graystone, S. J. Langford and T. D. M. Bell, A fluorescent “2 in 1” proton sensor and polarity probe based on core substituted naphthalene diimide, Chem. Commun. 2013 49 5061–5063

    Article  CAS  Google Scholar 

  19. F. Doria, M. Folini, V. Grande, G. Cimino-Reale, N. Zaffaroni and M. Freccero, Naphthalene diimides as red fluorescent pH sensors for functional cell imaging, Org. Biomol. Chem. 2015 13 570–576

    Article  CAS  PubMed  Google Scholar 

  20. P. Deng, C. H. Y. Ho, Y. Lu, H. W. Li, S. W. Tsang, S. K. So and B. S. Ong, Naphthalene diimide-difluorobenzene-based polymer acceptors for all-polymer solar cells, Chem. Commun. 2017 53 3249–3252

    Article  CAS  Google Scholar 

  21. S. Sharma, N. B. Kolhe, V. Gupta, V. Bharti, A. Sharma, R. Datt, S. Chand and S. K. Asha, Improved All-Polymer Solar Cell Performance of n-Type Naphthalene Diimide−Bithiophene P(NDI2OD-T2) Copolymer by Incorporation of Perylene Diimide as Coacceptor, Macromolecules 2016 49 8113–8125

    Article  CAS  Google Scholar 

  22. Y. Kim, J. Hong, J. H. Oh and C. Yang, Naphthalene Diimide Incorporated Thiophene-Free Copolymers with Acene and Heteroacene Units: Comparison of Geometric Features and Electron-Donating Strength of Co-units, Chem. Mater. 2013 25 3251–3259

    Article  CAS  Google Scholar 

  23. Q. Li, M. Peng, H. Li, C. Zhong, L. Zhang, X. Cheng, X. Peng, Q. Wang, J. Qin and Z. Li, A New “Turn-on” Naphthalenedimide-Based Chemosensor for Mercury Ions with High Selectivity: Successful Utilization of the Mechanism of Twisted Intramolecular Charge Transfer, Near-IR Fluorescence, and Cell Images, Org. Lett. 2012 14 2094–2097

    Article  CAS  PubMed  Google Scholar 

  24. Q. Song, F. Li, Z. Wang and X. Zhang, A supramolecular strategy for tuning the energy level of naphthalenediimide: Promoted formation of radical anions with extraordinary stability, Chem. Sci. 2015 6 3342–3346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. S. Guha, F. S. Goodson, L. J. Corson and S. Saha, Boundaries of Anion/Naphthalenediimide Interactions: From Anion−π Interactions to Anion-Induced Charge-Transfer and Electron-Transfer Phenomena, J. Am. Chem. Soc. 2012 134 13679–13691

    Article  CAS  PubMed  Google Scholar 

  26. S. Kumar and P. Mukhopadhyay, Ambient stable naphthalenediimide radical ions: synthesis by solvent-free, sonication, mechanical grinding or milling protocols, Green Chem. 2018 20 4620–4628

    Article  CAS  Google Scholar 

  27. S. Guha and S. Saha, Fluoride Ion Sensing by an Anion-π Interaction, J. Am. Chem. Soc. 2010 132 17674–17677

    Article  CAS  Google Scholar 

  28. S. Saha, Anion-Induced Electron Transfer, Acc. Chem. Res. 2018 51 2225–2236

    Article  CAS  PubMed  Google Scholar 

  29. H. Luo, Z. Liu, Z. Cai, L. Wu, G. Zhang, C. Liu and D. Zhang, Responsive Gels with the Polymer Containing Alternating Naphthalene Diimide and Fluorinated Alkyl Chains: Gel Formation and Responsiveness as Well as Electrical Conductivity of Polymer Thin Films, Chin. J. Chem. 2012 30 1453–1458

    Article  CAS  Google Scholar 

  30. J. Fan, X. Chang, M. He, C. Shang, G. Wang, S. Yin, H. Peng and Y. Fang, Functionality-Oriented Derivatization of Naphthalene Diimide: A Molecular Gel Strategy-Based Fluorescent Film for Aniline Vapor Detection, ACS Appl. Mater. Interfaces 2016 8 18584–18592

    Article  CAS  PubMed  Google Scholar 

  31. P. Lasitha and E. Prasad, Orange red emitting naphthalene diimide derivative containing dendritic wedges: aggregation induced emission (AIE) and detection of picric acid (PA), RSC Adv. 2015 5 41420–41427

    Article  CAS  Google Scholar 

  32. F. K. Zhan, S. M. Hsu, H. Cheng and H. C. Lin, Remarkable influence of alkyl chain lengths on supramolecular hydrogelation of naphthalene diimide-capped dipeptides, RSC Adv. 2015 5 48961–48964

    Article  CAS  Google Scholar 

  33. G. Shen, X. Li, X. Wu, Y. Wang, H. Shan, J. Xu, X. Liu, Z. Xu, F. Chen and Z. Chen, Naphthalene tetracarboxylic diimide (NDI)-based polymer solar cells processed by non-halogenated solvents, Org. Electron. 2017 46 203–210

    Article  CAS  Google Scholar 

  34. S. Chakraborty, H. Kar, A. Sikder and S. Ghosh, Steric ploy for alternating donor-acceptor co-assembly and cooperative supramolecular polymerization, Chem. Sci. 2017 8 1040–1045

    Article  CAS  PubMed  Google Scholar 

  35. B. A. Ikkanda, S. A. Samuel and B. L. Iverson, NDI and DAN DNA: Nucleic Acid-Directed Assembly of NDI and DAN, J. Org. Chem. 2014 79 2029–2037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. S. K. M. Nalluri, C. Berdugo, N. Javid, P. W. J. M. Frederix and R. V. Ulijn, Biocatalytic self-assembly of supramolecular charge-transfer nanostructures based on n-type semiconductor-appended peptides, Angew. Chem., Int. Ed. 2014 53 5882–5887

    Article  CAS  Google Scholar 

  37. L. V. Brownell, K. A. Robins, Y. Jeong, Y. Lee and D. Lee, Highly Systematic and Efficient HOMO−LUMO Energy Gap Control of Thiophene-Pyrazine-Acenes, J. Phys. Chem. C 2013 117 25236–25247

    Article  CAS  Google Scholar 

  38. S. Basak, S. Bhattacharya, A. Datta and A. Banerjee, Charge-Transfer Complex Formation in Gelation: The Role of Solvent Molecules with Different Electron-Donating Capacities, Chem. - Eur. J. 2014 20 5721–5726

    Article  CAS  PubMed  Google Scholar 

  39. T. C. Barros, S. Brochsztain, V. G. Toscano, P. B. Filho and M. J. Politi, Photophysical characterization of a 1,4,5,8-naphthalenediimide derivative, J. Photochem. Photobiol., A 1997 97–104

    Google Scholar 

  40. S. A. Jenekhe and J. A. Osaheni, Excimers and Exciplexes of Conjugated Polymers, Science 1994 265 765–768

    Article  CAS  Google Scholar 

  41. A. M. Sanders, T. J. Magnanelli, A. E. Bragg and J. D. Tovar, Photoinduced Electron Transfer Within Supramolecular DonorAcceptor Peptide Nanostructures Under Aqueous Conditions, J. Am. Chem. Soc. 2016 138(10) 3362–3370

    Article  CAS  PubMed  Google Scholar 

  42. A. Das and S. Ghosh, Stimuli-Responsive Self-Assembly of a Naphthalene Diimide by Orthogonal Hydrogen Bonding and Its Coassembly with a Pyrene Derivative by a Pseudo-Intramolecular Charge-Transfer Interaction, Angew. Chem., Int. Ed. 2014 53 1092–1097

    Article  CAS  Google Scholar 

  43. M. R. Molla, A. Das and S. Ghosh, Self-Sorted Assembly in a Mixture of Donor and Acceptor Chromophores, Chem. - Eur. J. 2010 16 10084–10093

    Article  CAS  PubMed  Google Scholar 

  44. A. Das, M. R. Molla, A. Banerjee, A. Paul and S. Ghosh, Hydrogen-Bonding Directed Assembly and Gelation of Donor-Acceptor Chromophores: Supramolecular Reorganization from a Charge-Transfer State to a Self-Sorted State, Chem. - Eur. J. 2011 17 6061–6066

    Article  CAS  PubMed  Google Scholar 

  45. M. M. J. Smulders, M. M. L. Nieuwenhuizen, T. F. A. de Greef, P. van der Schoot, A. P. H. J. Schenning and E. W. Meijer, How to Distinguish Isodesmic from Cooperative Supramolecular Polymerisation, Chem. - Eur. J. 2010 16 362–367

    Article  CAS  PubMed  Google Scholar 

  46. G. Markiewicz, M. M. J. Smulders and A. R. Stefankiewicz, Steering the Self-Assembly Outcome of a Single NDI Monomer into Three Morphologically Distinct Supramolecular Assemblies, with Concomitant Change in Supramolecular Polymerization Mechanism, Adv. Sci. 2019 1900577

    Google Scholar 

  47. Q. Yan, K. Cai and D. Zhao, Supramolecular aggregates with distinct optical properties from PDI oligomers of similar structures, Phys. Chem. Chem. Phys. 2016 18 1905–1910

    Article  CAS  PubMed  Google Scholar 

  48. G. Echue, G. C. Lloyd-Jones and C. F. J. Faul, Chiral Perylene Diimides: Building Blocks for Ionic Self-Assembly, Chem. - Eur. J. 2015 21 5118–5128

    Article  CAS  PubMed  Google Scholar 

  49. N. B. Kolhe, R. N. Devi, S. P. Senanayak, B. Jancy, K. S. Narayan and S. K. Asha, Structure engineering of naphthalene diimides for improved charge carrier mobility: self-assembly by hydrogen bonding, good or bad?, J. Mater. Chem. 2012 22 15235–15246

    Article  CAS  Google Scholar 

  50. M. Chetia, S. Debnath, S. Chowdhury and S. Chatterjee, Self-assembly and multifunctionality of peptide organogels: oil spill recovery, dye absorption and synthesis of conducting biomaterials, RSC Adv. 2020 10 5220–5233

    Article  CAS  Google Scholar 

  51. Y. Kumar, S. Kumar, K. Mandal and P. Mukhopadhyay, Isolation of Tetracyano-Naphthalenediimide and Its Stable Planar Radical Anion, Angew. Chem., Int. Ed. 2018 57 16318–16322

    Article  CAS  Google Scholar 

  52. M. Fujitsuka, S. S. Kim, C. Lu, S. Tojo and T. Majima, Intermolecular and Intramolecular Electron Transfer Processes from Excited Naphthalene Diimide Radical Anions, J. Phys. Chem. B 2015 119 7275–7282

    Article  CAS  PubMed  Google Scholar 

  53. T. Jiao, K. Cai, J. N. Nelson, Y. Jiao, Y. Qiu, G. Wu, J. Zhou, C. Cheng, D. Shen, Y. Feng, Z. Liu, M. R. Wasielewski, J. F. Stoddart and H. Li, Stabilizing the Naphthalenediimide Radical within a Tetracationic Cyclophane, J. Am. Chem. Soc. 2019 141 16915–16922

    Article  CAS  PubMed  Google Scholar 

  54. M. R. Ajayakumar, G. Hundal and P. Mukhopadhyay, A tetrastable naphthalenediimide: anion induced charge transfer, single and double electron transfer for combinational logic gates, Chem. Commun. 2013 49 7684–7686

    Article  CAS  Google Scholar 

  55. S. Brochsztain, M. A. Rodrigues, G. J. F. Demets and M. J. Politi, Stabilization of naphthalene-1,8:4,5-dicarboximide radicals in zirconium phosphonate solid materials and thin films, J. Mater. Chem. 2002 12 1250–1255

    Article  CAS  Google Scholar 

  56. Y. Che, A. Datar, X. Yang, T. Naddo, J. Zhao and L. Zang, Enhancing One-Dimensional Charge Transport through Intermolecular π-Electron Delocalization: Conductivity Improvement for Organic Nanobelts, J. Am. Chem. Soc. 2007 129 6354–6355

    Article  CAS  PubMed  Google Scholar 

  57. M. R. Ajayakumar and P. Mukhopadhyay, Naphthalene-bis-hydrazimide: radical anions and ICT as new bimodal probes for differential sensing of a library of amines, Chem. Commun. 2009 3702–3704

    Google Scholar 

  58. D. Zhou, Y. Wang, J. Jia, W. Yu, B. Qu, X. Li and X. Sun, H-Bonding and, charging mediated aggregation and emission for fluorescence turn-on detection of hydrazine hydrate, Chem. Commun. 2015 51 10656–10659

    Article  CAS  Google Scholar 

  59. S. W. Thomas III and T. M. Swager, Trace Hydrazine Detection with Fluorescent Conjugated Polymers: A Turn-On Sensory Mechanism, Adv. Mater. 2006 18 1047–1050

    Article  CAS  Google Scholar 

  60. A. Arulkashmir and B. P. Jain, Nanostructured organic materials and a process for the preparation thereof, US Patent, 9419232B2, 2016

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Lasitha.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lasitha, P. Radical anion formation exhibiting “turn-on” fluorescence sensing of hydrazine using a naphthalene diimide (NDI) derivative with a donor-acceptor-donor (D-A-D) molecular structure. Photochem Photobiol Sci 19, 1603–1612 (2020). https://doi.org/10.1039/d0pp00232a

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/d0pp00232a

Navigation