Skip to main content
Log in

Possibilities to estimate the personal UV radiation exposure from ambient UV radiation measurements

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

People are exposed to solar ultraviolet radiation (UVR) throughout their entire lives. Exposure to UVR is vital but also poses serious risks. The quantification of human UVR exposure is a complex issue. Personal UVR exposure is related to ambient UVR as well as to a variety of factors such as the orientation of the exposed anatomical site with respect to the sun and the duration of exposure. This is mainly determined by personal behaviour. A variety of efforts have been made in the past to measure or model the personal UVR exposure of people and often personal UVR exposure has been expressed as the percentage of ambient UVR. On the other hand, ambient UVR is being monitored at a variety of places and measurements are available even online. This suggests that both the knowledge of personal UVR exposure and measurements of ambient UVR is required. In this paper, a summary on the different methods, which use ambient UVR measurements to estimate personal UVR exposure of people, as well as a few examples, are given. Advantages and disadvantages will be discussed as well as possibilities and limitations. This also includes an overview of appropriate terminology, units and basic statistic parameters to describe personal UVR exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Thieden, P. A. Philipsen, J. Heydenreich and H. C. Wulf, UV radiation exposure related to age, sex, occupation, and sun behaviour based on time-stamped personal dosimeter readings, Arch. Dermatol., 2004a, 140, 197–203.

    Article  PubMed  Google Scholar 

  2. O. Larkö and B. L. Diffey, Natural UV-B radiation received by people with outdoor, indoor and mixed occupations and UV-B treatment of psoriasis, Clin. Exp. Dermatol., 1983, 8, 279–285.

    Article  PubMed  Google Scholar 

  3. S. N. Williams and K. A. Dienes, Sunscreen Sales, Socio-Economic Factors, and Melanoma Incidence in Northern Europe: A Population-Based Ecological Study, SAGE Open, 2014, 4(4), 1–6, DOI: 10.1177/2158244014559023.

    Article  Google Scholar 

  4. A. K. Day, C. J. Wilson, A. D. Hutchinson and R. M. Roberts, Sun-related behaviours among young Australians with Asian ethnic background: differences according to sociocultural norms and skin tone perceptions, Eur. J. Cancer Care, 2015, 24, 514–521.

    Article  CAS  Google Scholar 

  5. T. A. Calderón, A. Bleakley, A. B. Jordan, D. Lazovich and K. Glanz, Correlates of sun protection behaviors in racially and ethnically diverse U.S. adults, Prev. Med. Rep., 2019, 13, 346–353.

    Article  PubMed  Google Scholar 

  6. M. Kull, R. Kallikorm and M. Lember, Body mass index determines sunbathing habits: implications on vitamin D levels, Int. Med. J., 2009, 39, 256–258.

    Article  CAS  Google Scholar 

  7. S. Pettigrew, M. Jongenelis, M. Strickland, C. Minto, T. Slevin, G. Jalleh and C. Lin, Predictors of sun protection behaviours and sunburn among Australian adolescents, BMC Public Health, 2016, 16(565), 8.

    Google Scholar 

  8. E. Thieden, P. A. Philipsen, J. Sandy-Møller, J. Heydenreich and H. C. Wulf, Proportion of lifetime UV dose received by children, teenagers and adults based on time-stamped personal dosimetry, J. Invest. Dermatol., 2004b, 123, 1147–1150.

    Article  CAS  PubMed  Google Scholar 

  9. G. Schauberger, Model for the global irradiance of the solar biologically-effective ultraviolet radiation on inclined surfaces, Photochem. Photobiol., 1990, 52, 1029–1032.

    Article  CAS  PubMed  Google Scholar 

  10. G. Schauberger, Anisotropic model for the diffuse biologically-effective irradiance of solar UV radiation on inclined surfaces, Theor. Appl. Climatol., 1992, 46, 45–51.

    Article  Google Scholar 

  11. A. Oppenrieder, P. Hoeppe and P. Koepke, Routine measurement of erythemally effective UV irradiance on inclined surfaces, J. Photochem. Photobiol., B, 2003, 204(74), 85–94.

    Google Scholar 

  12. A. W. Schmalwieser, J. Gröbner, M. Blumthaler, B. Klotz, H. De Backer, D. Bolsée, R. Werner, D. Tomsic, L. Metelka, P. Eriksen, N. Jepsen, M. Aun, A. Heikkilä, T. Duprat, H. Sandmann, T. Weiss, A. Bais, Z. Toth, A. M. Siani, L. Vaccaro, H. Diémoz, D. Grifoni, G. Zipoli, G. Lorenzetto, B. H. Petkov, A. G. di Sarra, F. Massen, C. Yousif, A. A. Aculinin, P. den Outer, T. Svendby, A. Dahlback, B. Johnsen, J. Biszczuk-Jakubowska, J. Krzyscin, D. Henriques, N. Chubarova, P. Kolarž, Z. Mijatovic, D. Groselj, A. Pribullova, J. R. M. Gonzales, J. Bilbao, J. M. V. Guerrero, A. Serrano, S. Andersson, L. Vuilleumier, A. Webb and J. O’Hagan, UV Index monitoring in Europe, Photochem. Photobiol. Sci., 2017, 16, 1349–1370.

    Article  CAS  PubMed  Google Scholar 

  13. D. F. Robertson, Long-term field measurements of erythemally effective natural ultraviolet radiation, in The biological effects of Ultraviolet Radiation, ed. F. Urbach, Pergamon Press, Oxford, UK, 1969, pp. 433–436.

    Google Scholar 

  14. D. Berger, The sunburning ultraviolet meter: design and performance, Photochem. Photobiol., 1976, 24, 587–593.

    Article  CAS  PubMed  Google Scholar 

  15. A. Dahlback, Measurements of biologically effective UV doses, total ozone abundances, and cloud effects with multichannel, moderate bandwidth filter instruments, Appl. Opt., 1996, 35, 6514–6521.

    Article  CAS  PubMed  Google Scholar 

  16. D. Vernez, A. Milon, L. Vuilleumier and J.-L. Bulliard, Anatomical exposure patterns of skin to sunlight: relative contributions of direct, diffuse and reflected ultraviolet radiation, Br. J. Dermatol., 2012, 167, 383–390.

    Article  CAS  PubMed  Google Scholar 

  17. A. V. Parisi, M. G. Kimlin, J. C. Wong and M. Wilson, Diffuse component of solar ultraviolet radiation in tree shade, J. Photochem. Photobiol., B, 2000, 54, 116–120.

    Article  CAS  Google Scholar 

  18. A. Religi, C. Backes, L. Moccozet, L. Vuilleumier, D. Vernez and J.-L. Bulliard, Body Anatomical UV Protection Predicted by Shade Structures: A Modeling Study, Photochem. Photobiol., 2018, 94, 1289–1296.

    Article  CAS  PubMed  Google Scholar 

  19. K.-M. Wai, P. K. N. Yu and K.-S. Lam, Reduction of Solar UV Radiation Due to Urban HighRise Buildings – A Coupled Modelling Study, PLoS One, 2015, 10, e0135562.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. A. W. Schmalwieser, B. Klotz, M. Schwarzmann, D. J. Baumgartner, J. Schreder, G. Schauberger and M. Blumthaler, The Austrian UVA-Network, Photochem. Photobiol., 2019, 95, 1258–1266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. G. Sánchez, A. Serrano and M. L. Cancillo, Shadow-band correction for diffuse ultraviolet radiation measurements, J. Geophys. Res., 2013, 118, 3807–3816.

    Article  Google Scholar 

  22. J. Zeng, R. McKenzie, K. Stamnes, M. Wineland and J. Rosen, Measured UV spectra compared with discrete ordinate method simulations, J. Geophys. Res., 1994, 99, 23019–23030.

    Article  Google Scholar 

  23. W. Ireland and R. Sacher, The angular distribution of solar ultraviolet, visible and near-infrared radiation from cloudless skies, Photochem. Photobiol., 1996, 63, 483–486.

    Article  CAS  Google Scholar 

  24. A. R. Bais, C. S. Zerefos, C. Meleti, I. C. Ziomas and K. Tourpali, Spectral measurements of solar UVB radiation and its relations to total ozone, SO2 and clouds, J. Geophys. Res., 1993, 98, 5199–5204.

    Article  CAS  Google Scholar 

  25. M. Blumthaler, W. Ambach and M. Salzgeber, Effects of cloudiness on global and diffuse UV irradiance in a highmountain area, Theor. Appl. Climatol., 1994, 50, 23–30.

    Article  Google Scholar 

  26. A. Kylling, A. F. Bais, M. Blumthaler, J. Schreder, C. S. Zerefos and E. Kosmidis, Effect of aerosols on solar UV irradiances during the photochemical activity and solar ultraviolet radiation campaign, J. Geophys. Res., 1998, 103, 51–60.

    Google Scholar 

  27. J. W. Krzyścin and S. Puchalski, Aerosol impact on the surface UV radiation from the ground-based measurements taken at Belk, Poland, 1980–1996, J. Geophys. Res., 1998, 103, 175–181.

    Google Scholar 

  28. M. Blumthaler and W. Ambach, Solar UVB-albedo of various surfaces, Photochem. Photobiol., 1988, 48, 85–88.

    Article  CAS  PubMed  Google Scholar 

  29. F. Urbach, Geographic pathology of skin cancer, in The Biologic Effect of Ultraviolet Radiation with Emphasis on the Skin, ed. F. Urbach, Pergamon Press, Oxford, UK, 1969, 635–650.

    Google Scholar 

  30. B. L. Diffey, T. J. Tate and A. Davis, Solar dosimetry of the face: the relationship of natural ultraviolet radiation exposure to basal cell carcinoma localisation, Phys. Med. Biol., 1979, 24, 931–939.

    Article  CAS  PubMed  Google Scholar 

  31. C. F. Wong, R. A. Fleming, S. J. Carter, I. T. Ring and D. Vishvakarman, Measurement of human exposure to ultraviolet-B solar radiation using a CR- 39 dosimeter, Health Phys., 1992, 63, 457–461.

    Article  CAS  PubMed  Google Scholar 

  32. F. Wang, L. Hu, Q. Gao, Y. Gao, G. Liu, Y. Zheng and Y. Liu, Risk of Ocular Exposure to Biologically Effective UV Radiation in Different Geographical Directions, Photochem. Photobiol., 2014, 90, 1174–1183.

    Article  CAS  PubMed  Google Scholar 

  33. P. Hoeppe, A. Oppenrieder, C. Erianto, P. Koepke, J. Reuder, M. Seefeldner and D. Nowak, Visualization of UV exposure of the human body based on data from a scanning UV-measuring system, Int. J. Biometeorol., 2004, 49, 18–25.

    Article  CAS  PubMed  Google Scholar 

  34. A. W. Schmalwieser, G. Schauberger, W. B. Grant, S. J. Mackin and S. Pope, A first approach in measuring, modeling and forecasting the vitamin D effective UV radiation, Proc. SPIE-Int. Soc. Opt. Eng., 2006, 6362(63622C), 9.

    Google Scholar 

  35. A. Nasufi, A. W. Schmalwieser, M. Grage, P. Eriksen, G. Harrison, A. Young, K. Baczynska, A. Pearson, J. O’Hagan, E. Thieden, J. Heydenreich and P. Philipsen, Modelling the biologically effective UV exposure distribution of the human body, 14th Congress of the European Society for Photobiology; SEP 1–6, 2011, Geneva, Switzerland, Book of Abstracts, 2011, 46–47.

  36. A. V. Challoner, D. Corless, A. Davis, G. H. W. Deane, B. L. Diffey, S. P. Gupta and I. A. Magnus, Personnel monitoring of exposure to ultraviolet radiation, Clin. Exp. Dermatol., 1976, 1, 175–179.

    Article  CAS  PubMed  Google Scholar 

  37. B. L. Diffey and P. J. Saunders, Behaviour outdoors and its effect on personal ultraviolet exposure rate measured using a portable datalogging dosimeter, Photochem. Photobiol., 1995, 61, 615–618.

    Article  CAS  PubMed  Google Scholar 

  38. A. W. Schmalwieser, V. T. Schmalwieser and S. S. Schmalwieser, Influence of Air Temperature on the UV Exposure of Different Body Sites Due to Clothing of Young Women During Daily Errands, Photochem. Photobiol., 2019, 95, 1068–1075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. B. Diffey, A Behavioral Model for Estimating Population Exposure to Solar Ultraviolet Radiation, Photochem. Photobiol., 2008, 84, 371–375.

    Article  CAS  PubMed  Google Scholar 

  40. J. Sun, R. M. Lucas, S. Harrison, I. van der Mei, B. K. Armstrong, M. Nowak, A. Brodie and M. G. Kimlin, The relationship between ambient ultraviolet radiation (UVR) and objectively measured personal UVR exposure dose is modified by season and latitude, Photochem. Photobiol. Sci., 2014, 13, 1711–1718.

    Article  CAS  PubMed  Google Scholar 

  41. P. Weihs, A. Schmalwieser, C. Reinisch, E. Meraner, S. Walisch and M. Maier, Measurements of personal uv exposure on different parts of the body during various activities, Photochem. Photobiol., 2013, 89, 1004–1007.

    Article  CAS  PubMed  Google Scholar 

  42. D. Vernez, A. Milon, L. Vuilleumier, J.-L. Bulliard, A. Koechlin, M. Boniol and J. F. Dore, A general model to predict individual exposure to solar UV by using ambient irradiance data, J Exposure Sci. Environ. Epidemiol., 2015, 25, 113–118.

    Article  Google Scholar 

  43. B. Diffey, The Early Days of Personal Solar Ultraviolet Dosimetry, Atmosphere, 2020, 11(125), 11.

    Google Scholar 

  44. O. N. Galkin and I. P. Terenetskaya, ‘Vitamin D’ biodosimeter: basic characteristics and potential applications, J. Photochem. Photobiol., B, 1999, 53, 12–19.

    Article  CAS  Google Scholar 

  45. G. Ronto, S. Gaspar, P. Grof, A. Berces and Z. Gugolya, Ultraviolet dosimetry in outdoor measurements based on bacteriophage T7 as a biosensor, Photochem. Photobiol., 1994, 59, 204–205.

    Article  Google Scholar 

  46. L. E. Quintern, G. Horneck, U. Eschweiler and H. Backer, A biofilm used as ultraviolet-dosimeter, Photochem. Photobiol., 1992, 55, 389–395.

    Article  Google Scholar 

  47. A. Davis, G. H. W. Deane and B. L. Diffey, Possible dosimeter for ultraviolet radiation, Nature, 1976, 261, 169–170.

    Article  CAS  PubMed  Google Scholar 

  48. C. S. Cockell, K. Scherer, G. Horneck, P. Rettberg, R. Facius, A. Gugg-Helminger, C. Driscoll and P. Lee, Exposure of Arctic Field Scientists to Ultraviolet Radiation Evaluated Using Personal Dosimeters, Photochem. Photobiol., 2001, 74, 570–578.

    Article  CAS  PubMed  Google Scholar 

  49. J. Heydenreich and H. C. Wulf, Miniature Personal Electronic UVR Dosimeter with Erythema Response and Time-stamped Readings in a Wristwatch, Photochem. Photobiol., 2005, 81, 1138–1144.

    Article  CAS  PubMed  Google Scholar 

  50. J. Heydenreich and H. C. Wulf, Personal electronic UVR dosimeter measurements: specific and general uncertainties, Photochem. Photobiol. Sci., 2019, 18, 1461–1470.

    Article  CAS  PubMed  Google Scholar 

  51. M. Allen and R. McKenzie, Enhanced UV exposure on a skifield compared with exposures at sea level, Photochem. Photobiol. Sci., 2005, 4, 429–437.

    Article  CAS  PubMed  Google Scholar 

  52. A. W. Schmalwieser, A. Cabaj, A. S. Schauberger, H. Rohn, B. Maier and H. Maier, Facial solar UV exposure of Austrian farmers during occupation, Photochem. Photobiol., 2010a, 86, 1404–1413.

    Article  CAS  PubMed  Google Scholar 

  53. A. Webb, J. Gröbner and M. Blumthaler, A Practical Guide to Operating Broadband Instruments Measuring Erythemally Weighted Irradiance, Office for Official Publications of the European Communities, Luxembourg, 2006, 21 pp.

  54. A. W. Schmalwieser, C. Enzi, S. Wallisch, F. Holawe, B. Maier and P. Weihs, UV exposition during typical lifestyle behavior in an urban environment, Photochem. Photobiol., 2010b, 86, 711–715.

    Article  CAS  PubMed  Google Scholar 

  55. L. Wainwright, A. V. Parisi and N. Downs, Dual calibrated dosimeter for simultaneous measurements of erythemal and vitamin D effective solar ultraviolet radiation, J. Photochem. Photobiol., B, 2016, 157, 15–21.

    Article  CAS  Google Scholar 

  56. A. W. Schmalwieser and A. M. Siani, Review on Nonoccupational Personal Solar UV Exposure Measurements, Photochem. Photobiol., 2018, 94, 900–915.

    Article  CAS  PubMed  Google Scholar 

  57. G. R. Casale, A. M. Siani, H. Diémoz, G. Agnesod, A. V. Parisi and A. Colosimo, Extreme UV index and solar exposures at plateau rosà (3500ma.s.l.) in valle d’aosta Region, Italy, Sci. Total Environ., 2015, 512–513, 622–630.

    Article  CAS  PubMed  Google Scholar 

  58. Y. M. Liu, D. Ono, Y. Yu, J. Wang and J. Yu, Individual solar-UV doses of pupils and undergraduates in China, J. Exposure Sci. Environ. Epidemiol., 2006, 16, 531–537.

    Article  CAS  Google Scholar 

  59. M. G. Kimlin, L. Fang, Y. Feng, L. Wang, L. Hao, J. Fan, N. Wang, F. Meng, R. Yang, S. Cong, X. Liang, B. Wang, M. Linet, N. Potischman, C. Kitahara, A. Chao, Y. Wang, J. Sun and A. Brodie, Personal ultraviolet Radiation exposure in a cohort of Chinese mother and child pairs: the Chinese families and children study, BMC Public Health, 2019, 19(281), 11.

    Google Scholar 

  60. I. Cheng, A. Kiss and L. Lilge, An Observational Study of Personal Ultraviolet Dosimetry and Acute Diffuse Reflectance Skin Changes at Extreme Altitude, Wilderness Environ. Med., 2013, 24, 390–396.

    Article  CAS  PubMed  Google Scholar 

  61. V. Nurse, C. Y. Wright, M. Allen and R. L. McKenzie, Solar Ultraviolet Radiation Exposure of South African Marathon Runners During Competition Marathon Runs and Training Sessions: A Feasibility Study, Photochem. Photobiol., 2015, 91, 971–979.

    Article  CAS  PubMed  Google Scholar 

  62. D. Schoder, J. Heydenreich and A. W. Schmalwieser, First Results From Personal UV Exposure Measurements In Kenya, ESP-IUBP World Congress; AUG 25–30, 2019, Barcelona, Spain, Book of Abstracts, 2019, 477–477.

  63. G. R. Casale, A. M. Siani and A. Colosimo, Occupational exposure to solar UV radiation, Household Pers. Care Today, 2011, 4, 14–17.

    Google Scholar 

  64. A. M. Siani, G. R. Casale, R. Sisto, A. Colosimo, C. A. Lang and M. G. Kimlin, Occupational Exposures to Solar Ultraviolet Radiation of Vineyard Workers in Tuscany (Italy), Photochem. Photobiol., 2011, 87, 925–934.

    Article  CAS  PubMed  Google Scholar 

  65. M. Blumthaler, Quality assurance and quality control methodologies used within the Austrian UV monitoring network, Radiat. Prot. Dosim., 2004, 111, 359–362.

    Article  Google Scholar 

  66. M. Blumthaler, B. Klotz, M. Schwarzmann and J. Schreder, The Austrian UV monitoring network, AIP Conf. Proc., 2017, 1810, 110001.

    Article  Google Scholar 

  67. S. de Winter, A. A. Vink, L. Roza and S. Pavel, Solar-Simulated Skin Adaptation and its Effect on Subsequent UV-Induced Epidermal DNA Damage, J. Invest. Dermatol., 2001, 117, 678–682.

    Article  PubMed  Google Scholar 

  68. D. Vernez, A. Milon, L. Francioli, J.-L. Bulliard, L. Vuilleumier and L. Moccozet, A Numeric Model to Simulate Solar Individual Ultraviolet Exposure, Photochem. Photobiol., 2011, 87, 721–728.

    Article  CAS  PubMed  Google Scholar 

  69. J. Heydenreich, P. Philipsen, P. Eriksen and A. W. Schmalwieser, A new instrument to measure UV radiation at inclined planes, Proceedings of International Radiation Symposium 2012, Berlin, Germany, 2012, 549.

  70. P. Koepke and M. Mech, UV irradiance on arbitrarily oriented surfaces: variation with atmospheric and ground properties, Theor. Appl. Climatol., 2005, 81, 25–32.

    Article  Google Scholar 

  71. B. Mayer and A. Kylling, Technical note: The libRadtran software package for radiative transfer calculations—Description and examples of usem, Atmos. Chem. Phys., 2005, 5, 1855–1877.

    Article  CAS  Google Scholar 

  72. C. A. Gueymard, The SMARTS spectral irradiance model after 25 years: New developments and validation of reference spectra, Sol. Energy, 2019, 187, 233–253.

    Article  Google Scholar 

  73. P. Koepke, A. Bais, D. Balis, M. Buchwitz, H. De Backer, X. de Cabo, P. Eckert, P. Eriksen, D. Gillotay, A. Heikkilä, T. Koskela, B. Lapeta, Z. Litynska, J. Lorente, B. Mayer, A. Renaud, A. Ruggaber, G. Schauberger, G. Seckmeyer, P. Seifert, a. Schmalwieser, H. Schwander, K. Vanicek and M. Weber, Comparison of models used for UV index calculations, Photochem. Photobiol., 1998, 67, 657–662.

    Article  CAS  PubMed  Google Scholar 

  74. H. De Backer, P. Koepke, A. Bais, X. de Cabo, T. Frei, D. Gillotay, Ch. Haite, A. Heikkilä, A. Kazantzidis, T. Koskela, E. Kyrö, B. Lapeta, J. Lorente, K. Masson, B. Mayer, H. Plets, A. Redondas, A. Renaud, G. Schauberger, A. Schmalwiesser, H. Schwander and K. Vanicek, Comparison of measured and modelled uv indices for the assessment of health risks, Meteorol. Appl., 2001, 8, 267–277.

    Article  Google Scholar 

  75. P. Koepke, H. De Backer, A. Bais, A. Curylo, K. Eerme, U. Feister, B. Johnsen, J. Junk, A. Kazantzidis, J. Krzyscin, A. Lindfors, J. A. Olseth, P. den Outer, A. Pribullova, A. W. Schmalwieser, H. Slaper, H. Staiger, J. Verdebout, L. Vuilleumier and P. Weihs, Modelling solar UV radiation in the past: Comparison of algorithms and input data, Proc. SPIE-Int. Soc. Opt. Eng., 2006, 6362, U292–U302.

    Google Scholar 

  76. J. Reuder, M. Dameris and P. Koepke, Future UV radiation in Central Europe modelled from ozone scenarios, J. Photochem. Photobiol., B, 2001, 61, 94–105.

    Article  CAS  Google Scholar 

  77. J. J. Streicher, W. C. Culverhouse, M. S. Dulberg and R. J. Fornaro, Modeling the anatomical distribution of sunlight, Photochem. Photobiol., 2004, 79, 40–47.

    CAS  PubMed  Google Scholar 

  78. M. Mech and P. Koepke, Model for UV irradiance on arbitrarily oriented surfaces, Theor. Appl. Climatol., 2003, 77, 151–158.

    Article  Google Scholar 

  79. G. Seckmeyer, M. Schrempf, A. Wieczorek, S. Riechelmann, K. Graw, S. Seckmeyer and M. Zankl, A Novel Method to Calculate Solar UV Exposure Relevant to Vitamin D Production in Humans, Photochem. Photobiol., 2013, 89, 974–983.

    Article  CAS  PubMed  Google Scholar 

  80. S. E. Braslavsky, Glossary of terms used in photochemistry - 3rd Edition - IUPAC Recommendations 2006, Pure Appl. Chem., 2007, 79, 293–465.

    Article  CAS  Google Scholar 

  81. V. E. Fioletov, L. J. B. McArthur, T. W. Mathews and L. Marrett, On the relationship between erythemal and vitamin D action spectrum weighted ultraviolet radiation, J. Photochem. Photobiol., B, 2009, 95, 9–16.

    Article  CAS  Google Scholar 

  82. M. Miyauchi and H. Nakajima, Determining an Effective UV Radiation Exposure Time for Vitamin D Synthesis in the Skin Without Risk to Health: Simplified Estimations from UV Observations, Photochem. Photobiol., 2016, 92, 863–869.

    Article  CAS  PubMed  Google Scholar 

  83. [ICNIRP] International Commission on Non-Ionizing Radiation Protection, Global Solar UV-Index—WHO/WMO/INCIRP Recommendation, INCIRP Publication No. 1/95, INCIRP, Oberschleissheim, Germany, 1995.

  84. K. Vanicek, T. Frei, T. Z. Litynska and A. Schmalwieser, UV-Index for the Public, European Communities Publication, Brussels, 2000.

    Google Scholar 

  85. World Health Organisation (WHO), Global Solar UV Index: A Practical User Guide, WHO, Geneva, Switzerland, 2002.

    Google Scholar 

  86. G. Saxebøl, UVIh—a proposal for a practical unit for biological effective dose for ultraviolet radiation exposure, Radiat. Prot. Dosim., 2000, 88, 261.

    Article  Google Scholar 

  87. A. W. Schmalwieser, G. Schauberger, M. Janouch, M. Nunez, T. Koskela, D. Berger and G. Karamanian, Global Forecast Model to Predict the Daily Dose of the Solar Erythemally Effective UV Radiation, Photochem. Photobiol., 2005, 81, 154–162.

    Article  CAS  PubMed  Google Scholar 

  88. Commission Internationale de l’Eclairage (CIE), Standard Erythema Dose, a Review, Technical Report CIE 125–1997, CIE, Vienna, Austria, 1997.

    Google Scholar 

  89. T. B. Fitzpatrick, The Validity and Practicality of Sun-Reactive Skin Types I through VI, Arch. Dermatol., 1988, 124, 869–871.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alois W. Schmalwieser.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmalwieser, A.W. Possibilities to estimate the personal UV radiation exposure from ambient UV radiation measurements. Photochem Photobiol Sci 19, 1249–1261 (2020). https://doi.org/10.1039/d0pp00182a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/d0pp00182a

Navigation