Skip to main content

Advertisement

SpringerLink
  • Photochemical & Photobiological Sciences
  • Journal Aims and Scope
  • Submit to this journal
The robustness of the terminal emitter site in major LHCII complexes controls xanthophyll function during photoprotection
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

On the PsbS-induced quenching in the plant major light-harvesting complex LHCII studied in proteoliposomes

07 April 2020

Krzysztof Pawlak, Suman Paul, … Alfred R. Holzwarth

The location of the low-energy states in Lhca1 favors excitation energy transfer to the core in the plant PSI-LHCI supercomplex

14 November 2022

Vladimir I. Novoderezhkin & Roberta Croce

High-light-inducible proteins HliA and HliB: pigment binding and protein–protein interactions

26 February 2022

Minna M. Konert, Anna Wysocka, … Roman Sobotka

Chlorophyll Degradation and Light-harvesting Complex II Aggregate Formation During Dark-induced Leaf Senescence in Arabidopsis Pheophytinase Mutants

08 February 2019

Young Nam Yang, Rana B. Safarova, … Choon-Hwan Lee

Regulation of Chlorophyll Biogenesis by Phytochrome A

16 May 2019

V. A. Sineshchekov & O. B. Belyaeva

Accumulation of geranylgeranylated chlorophylls in the pigment-protein complexes of Arabidopsis thaliana acclimated to green light: effects on the organization of light-harvesting complex II and photosystem II functions

04 May 2021

Václav Karlický, Zuzana Kmecová Materová, … Vladimír Špunda

Protein–chromophore interactions controlling photoisomerization in red/green cyanobacteriochromes

11 April 2022

Nathan C. Rockwell, Marcus V. Moreno, … J. Clark Lagarias

Energy transfer from chlorophyll f to the trapping center in naturally occurring and engineered Photosystem I complexes

01 February 2019

Vasily Kurashov, Ming-Yang Ho, … John H. Golbeck

RETRACTED ARTICLE: Light Harvesting-like Protein 3 Interacts with Phytoene Synthase and Is Necessary for Carotenoid and Chlorophyll Biosynthesis in Rice

20 March 2021

Feng Yang, Das Debatosh, … Jian-hua Zhang

Download PDF
  • Paper
  • Open Access
  • Published: 27 October 2020

The robustness of the terminal emitter site in major LHCII complexes controls xanthophyll function during photoprotection

  • Francesco Saccon1,
  • Milan Durchan2,
  • Tomáš Polívka2 &
  • …
  • Alexander V. Ruban1 

Photochemical & Photobiological Sciences volume 19, pages 1308–1318 (2020)Cite this article

  • 73 Accesses

  • 7 Citations

  • 14 Altmetric

  • Metrics details

Abstract

Xanthophylls in light harvesting complexes perform a number of functions ranging from structural support to light-harvesting and photoprotection. In the major light harvesting complex of photosystem II in plants (LHCII), the innermost xanthophyll binding pockets are occupied by lutein molecules. The conservation of these sites within the LHC protein family suggests their importance in LHCII functionality. In the present work, we induced the photoprotective switch in LHCII isolated from the Arabidopsis mutant npq1lut2, where the lutein molecules are exchanged with violaxanthin. Despite the differences in the energetics of the pigments and the impairment of chlorophyll fluorescence quenching in vivo, we show that isolated complexes containing violaxanthin are still able to induce the quenching switch to a similar extent to wild type LHCII monomers. Moreover, the same spectroscopic changes take place, which suggest the involvement of the terminal emitter site (L1) in energy dissipation in both complexes. These results indicate the robust nature of the L1 xanthophyll binding domain in LHCII, where protein structural cues are the major determinant of the function of the bound carotenoid.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. D. Siefermann-Harms, Physiol. Plant., 1987, 69, 561–568.

    Article  CAS  Google Scholar 

  2. B. Demmig-Adams and W. W. Adams, Trends Plant Sci., 1996, 1, 21–26.

    Article  Google Scholar 

  3. M. Guerin, M. E. Huntley and M. Olaizola, Trends Biotechnol., 2003, 21, 210–216.

    Article  CAS  PubMed  Google Scholar 

  4. N. I. Krinsky, J. T. Landrum and R. A. Bone, Annu. Rev. Nutr., 2003, 23, 171–201.

    Article  CAS  PubMed  Google Scholar 

  5. A. V. Ruban, A. J. Young, A. A. Pascal and P. Horton, Plant Physiol., 1994, 104, 227–234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. A. V. Ruban, A. A. Pascal and B. Robert, FEBS Lett., 2000, 477, 181–185.

    Article  CAS  PubMed  Google Scholar 

  7. R. Croce, S. Weiss and R. Bassi, J. Biol. Chem., 1999, 274, 29613–29623.

    Article  CAS  PubMed  Google Scholar 

  8. H. A. Frank and R. J. Cogdell, Photochem. Photobiol., 1996, 63, 257–264.

    Article  CAS  PubMed  Google Scholar 

  9. R. Croce, M. G. Müller, R. Bassi and A. R. Holzwarth, Biophys. J., 2001, 80, 901–915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. T. Polívka and H. A. Frank, Acc. Chem. Res., 2010, 43, 1125–1134.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. E. J. G. Peterman, C. C. Gradinaru, F. Calkoen, J. C. Borst, R. van Grondelle and H. van Amerongen, Biochemistry, 1997, 36, 12208–12215.

    Article  CAS  PubMed  Google Scholar 

  12. M. Havaux and K. K. Niyogi, Proc. Natl. Acad. Sci. U. S. A., 1999, 96, 8762–8767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. L. Dall’Osto, S. Cazzaniga, M. Havaux and R. Bassi, Mol. Plant, 2010, 3, 576–593.

    Article  PubMed  CAS  Google Scholar 

  14. A. V. Ruban, R. Berera, C. Ilioaia, I. H. van Stokkum, J. T. M. Kennis, A. A. Pascal, H. van Amerongen, B. Robert, P. Horton and R. van Grondelle, Nature, 2007, 450, 575–578.

    Article  CAS  PubMed  Google Scholar 

  15. V. Mascoli, N. Liguori, P. Xu, L. M. Roy, I. H. van Stokkum and R. Croce, Chem, 2019, 5, 2900–2912.

    Article  CAS  Google Scholar 

  16. M. Son, A. Pinnola, S. C. Gordon, R. Bassi and G. S. Schlau-Cohen, Nat. Commun., 2020, 11, 1295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. A. V. Ruban, Plant Physiol., 2016, 170, 1903–1916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. T. P. J. Krüger, V. I. Novoderezhkin, C. Ilioaia and R. Van Grondelle, Biophys.J., 2010, 98, 3093–3101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. C. Ilioaia, M. P. Johnson, P. Horton and A. V. Ruban, J. Biol. Chem., 2008, 283, 29505–29512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. T. P. J. Krüger, C. Ilioaia, M. P. Johnson, E. Belgio, P. Horton, A. V. Ruban and R. Van Grondelle, Biophys. J., 2013, 105, 1018–1026.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. G. S. Schlau-Cohen, H. Y. Yang, T. P. Krüger, P. Xu, M. Gwizdala, R. Van Grondelle, R. Croce and W. E. Moerner, J. Phys. Chem. Lett., 2015, 6, 860–867.

    Article  CAS  PubMed  Google Scholar 

  22. F. Saccon, V. Giovagnetti, M. K. Shukla and A. V. Ruban, J. Exp. Bot., 2020, 1–12.

  23. Z. Liu, H. Yan, K. Wang, T. Kuang, J. Zhang, L. Gui, X. An and W. Chang, Nature, 2004, 428, 287–292.

    Article  CAS  PubMed  Google Scholar 

  24. R. Croce, R. Remelli, C. Varotto, J. Breton and R. Bassi, FEBS Lett., 1999, 456, 1–6.

    Article  CAS  PubMed  Google Scholar 

  25. M. Mozzo, L. Dall’Osto, R. Hienerwadel, R. Bassi and R. Croce, J. Biol. Chem., 2008, 283, 6184–6192.

    Article  CAS  PubMed  Google Scholar 

  26. M. Son, A. Pinnola, R. Bassi and G. S. Schlau-Cohen, Chem, 2019, 5, 575–584.

    Article  CAS  Google Scholar 

  27. V. I. Novoderezhkin, M. A. Palacios, H. Van Amerongen and R. Van Grondelle, J. Phys. Chem. B, 2005, 109, 10493–10504.

    Article  CAS  PubMed  Google Scholar 

  28. A. V. Ruban, P. J. Lee, M. Wentworth, A. J. Young and P. Horton, J. Biol. Chem., 1999, 274, 10458–10465.

    Article  CAS  PubMed  Google Scholar 

  29. P. Jahns, D. Latowski and K. Strzalka, Biochim. Biophys. Acta, Bioenerg., 2009, 1787, 3–14.

    Article  CAS  Google Scholar 

  30. T. Polívka, D. Zigmantas, V. Sundström, E. Formaggio, G. Cinque and R. Bassi, Biochemistry, 2002, 41, 439–450.

    Article  PubMed  CAS  Google Scholar 

  31. M. Fuciman, M. M. Enriquez, T. Polívka, L. Dallosto, R. Bassi and H. A. Frank, J. Phys. Chem. B, 2012, 116, 3834–3849.

    Article  CAS  PubMed  Google Scholar 

  32. N. Liguori, P. Xu, I. H. van Stokkum, B. van Oort, Y. Lu, D. Karcher, R. Bock and R. Croce, Nat. Commun., 2017, 8, 1994.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. N. E. Holt, D. Zigmantas, L. Valkunas, X. P. Li, K. K. Niyogi and G. R. Fleming, Science, 2005, 307, 433–436.

    Article  CAS  PubMed  Google Scholar 

  34. S. Park, A. L. Fischer, C. J. Steen, M. Iwai, J. M. Morris, P. J. Walla, K. K. Niyogi and G. R. Fleming, J. Am. Chem. Soc., 2018, 140, 11965–11973.

    Article  CAS  PubMed  Google Scholar 

  35. B. J. Pogson, K. K. Niyogi, O. Bjorkman and D. DellaPenna, Proc. Natl. Acad. Sci. U. S. A., 1998, 95, 13324–13329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. K. Niyogi, C. Shih, C. Soon, B. Pogson, D. Dellapenna and O. Björkman, Photosynth. Res., 2001, 67, 139–145.

    Article  CAS  PubMed  Google Scholar 

  37. M. P. Johnson, A. Zia, P. Horton and A. V. Ruban, Chem. Phys., 2010, 373, 23–32.

    Article  CAS  Google Scholar 

  38. F. Saccon, M. Durchan, R. Kana, O. Prášil, A. V. Ruban and T. Polívka, J. Phys. Chem. B, 2019, 123, 9312–9320.

    Article  CAS  PubMed  Google Scholar 

  39. L. Dall’Osto, C. Lico, J. Alric, G. Giuliano, M. Havaux and R. Bassi, BMC Plant Biol., 2006, 6, 1–20.

    Article  CAS  Google Scholar 

  40. M. Wentworth, A. V. Ruban and P. Horton, Biochemistry, 2004, 43, 501–509.

    Article  CAS  PubMed  Google Scholar 

  41. A. V. Ruban and M. P. Johnson, Arch. Biochem. Biophys., 2010, 504, 78–85.

    Article  CAS  PubMed  Google Scholar 

  42. H. Ocampo-Alvarez, E. García-Mendoza and Govindjee, Biochim. Biophys. Acta, Bioenerg., 2013, 1827, 427–437.

    Article  CAS  Google Scholar 

  43. R. Kana, E. Kotabová, J. Kopečná, E. Trsková, E. Belgio. R. Sobotka and A. V. Ruban, FEBS Lett., 2016, 590, 1076–1085.

    Article  CAS  PubMed  Google Scholar 

  44. X. P. Li, O. Björkman, C. Shih, A. R. Grossman, M. Rosenquist, S. Jansson and K. K. Niyogi, Nature, 2000, 403, 391–395.

    Article  CAS  PubMed  Google Scholar 

  45. M. L. Pérez-Bueno, M. P. Johnson, A. Zia, A. V. Ruban and P. Horton, FEBS Lett., 2008, 582, 1477–1482.

    Article  PubMed  CAS  Google Scholar 

  46. M. P. Johnson, A. Zia and A. V. Ruban, Planta, 2012, 235, 193–204.

    Article  CAS  PubMed  Google Scholar 

  47. M. Tutkus, J. Chmeliov, D. Rutkauskas, A. V. Ruban and L. Valkunas, J. Phys. Chem. Lett., 2017, 8, 5898–5906.

    Article  CAS  PubMed  Google Scholar 

  48. C. Ilioaia, M. P. Johnson, P.-N. Liao, A. A. Pascal, R. van Grondelle, P. J. Walla, A. V. Ruban and B. Robert, J. Biol. Chem., 2011, 286, 27247–27254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. D. Rutkauskas, J. Chmeliov, M. Johnson, A. Ruban and L. Valkunas, Chem. Phys., 2012, 404, 123–128.

    Article  CAS  Google Scholar 

  50. P. Akhtar, M. Dorogi, K. Pawlak, L. Kovács, A. Bóta, T. Kiss, G. Garab and P. H. Lambrev, J. Biol. Chem., 2015, 290, 4877–4886.

    Article  CAS  PubMed  Google Scholar 

  51. F. G. Plumley and G. W. Schmidt, Proc. Natl. Acad. Sci. U. S. A., 1987, 84, 146–150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. H. Lokstein, L. Tian, J. E. Polle and D. DellaPenna, Biochim. Biophys. Acta, Bioenerg., 2002, 1553, 309–319.

    Article  CAS  Google Scholar 

  53. M. P. Johnson, M. L. Pérez-Bueno, A. Zia, P. Horton and A. V. Ruban, Plant Physiol., 2009, 149, 1061–1075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. B. van Oort, L. M. Roy, P. Xu, Y. Lu, D. Karcher, R. Bock and R. Croce, J. Phys. Chem. Lett., 2018, 9, 346–352.

    Article  PubMed  CAS  Google Scholar 

  55. M. P. Johnson, J. Exp. Bot., 2020, 71, 3380–3382.

    Article  CAS  PubMed  Google Scholar 

  56. S. Tietz, M. Leuenberger, R. Höhner, A. H. Olson, G. R. Fleming and H. Kirchhoff, J. Biol. Chem., 2020, 295, 1857–1866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. H. Li, Y. Wang, M. Ye, S. Li, D. Li, H. Ren, M. Wang, L. Du, H. Li, G. Veglia, J. Gao and Y. Weng, Sci. China: Chem., 2020, 63, 1121–1133.

    Article  CAS  Google Scholar 

  58. P. O. Andersson, T. Gillbro, L. Ferguson and R. J. Cogdell, Photochem. Photobiol., 1991, 54, 353–360.

    Article  CAS  Google Scholar 

  59. M. Macernis, J. Sulskus, C. D. P. Duffy, A. V. Ruban and L. Valkunas, J. Phys. Chem. A, 2012, 116, 9843–9853.

    Article  CAS  PubMed  Google Scholar 

  60. M. J. Llansola-Portoles, R. Sobotka, E. Kish, M. K. Shukla, A. A. Pascal, T. Polívka and B. Robert, J. Biol. Chem., 2017, 292, 1396–1403.

    Article  CAS  PubMed  Google Scholar 

  61. R. J. van Dorssen, J. Breton, J. J. Plijter, K. Satoh, H. J. van Gorkom and J. Amesz, Biochim. Biophys. Acta, Bioenerg., 1987, 893, 267–274.

    Article  Google Scholar 

  62. M. M. Mendes-Pinto, D. Galzerano, A. Telfer, A. A. Pascal, B. Robert and C. Ilioaia, J. Biol. Chem., 2013, 288, 18758–18765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. H. Yan, P. Zhang, C. Wang, Z. Liu and W. Chang, Biochem. Biophys. Res. Commun., 2007, 355, 457–463.

    Article  CAS  PubMed  Google Scholar 

  64. G. D. Scholes, C. Curutchet, B. Mennucci, R. Cammi and J. Tomasi, J. Phys. Chem. B, 2007, 111, 6978–6982.

    Article  CAS  PubMed  Google Scholar 

  65. F. Müh, M. E. A. Madjet and T. Renger, J. Phys. Chem. B, 2010, 114, 13517–13535.

    Article  PubMed  CAS  Google Scholar 

  66. M. P. Johnson and A. V. Ruban, J. Biol. Chem., 2009, 284, 23592–23601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. C. Ramanan, J. M. Gruber, P. Malý, M. Negretti, V. Novoderezhkin, T. P. Krüger, T. Mančal, R. Croce and R. Van Grondelle, Biophys. J., 2015, 108, 1047–1056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. T. P. J. Krüger, P. Malý, M. T. A. Alexandre, T. Mančal, C. Büchel and R. van Grondelle, Proc. Natl. Acad. Sci. U. S. A., 2017, 114, E11063–E11071.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. A. Natali, J. M. Gruber, L. Dietzel, M. C. Stuart, R. Van Grondelle and R. Croce, J. Biol. Chem., 2016, 291, 16730–16739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. J. Adolphs and T. Renger, Biophys. J., 2006, 91, 2778–2797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. N. Liguori, X. Periole, S. J. Marrink and R. Croce, Sci. Rep., 2015, 5, 15661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. J. Chmeliov, A. Gelzinis, E. Songaila, R. Augulis, C. D. Duffy, A. V. Ruban and L. Valkunas, Nat. Plants, 2016, 2, 16045.

    Article  CAS  PubMed  Google Scholar 

  73. J. Chmeliov, A. Gelzinis, M. Franckevičius, M. Tutkus, F. Saccon, A. V. Ruban and L. Valkunas, J. Phys. Chem. Lett., 2019, 10, 7340–7346.

    Article  CAS  PubMed  Google Scholar 

  74. V. Mascoli, A. Gelzinis, J. Chmeliov, L. Valkunas and R. Croce, Chem. Sci., 2020, 11, 5697–5709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. K. Pawlak, S. Paul, C. Liu, M. Reus, C. Yang and A. R. Holzwarth, Photosynth. Res., 2020, 144, 195–208.

    Article  CAS  PubMed  Google Scholar 

  76. E. J. Taffet, B. G. Lee, Z. S. Toa, N. Pace, G. Rumbles, J. Southall, R. J. Cogdell and G. D. Scholes, J. Phys. Chem. B, 2019, 123, 8628–8643.

    Article  CAS  PubMed  Google Scholar 

  77. C. C. Gradinaru, J. T. Kennis, E. Papagiannakis, I. H. Van Stokkum, R. J. Cogdell, G. R. Fleming, R. A. Niederman and R. Van Grondelle, Proc. Natl. Acad. Sci. U. S. A., 2001, 98, 2364–2369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. T. Polívka and V. Sundström, Chem. Phys. Lett., 2009, 477, 1–11.

    Article  CAS  Google Scholar 

  79. D. Carbonera, A. Agostini, M. Di Valentin, C. Gerotto, S. Basso, G. M. Giacometti and T. Morosinotto, Biochim. Biophys. Acta, Bioenerg., 2014, 1837, 1235–1246.

    Article  CAS  Google Scholar 

  80. W. Wang, L. J. Yu, C. Xu, T. Tomizaki, S. Zhao, Y. Umena, X. Chen, X. Qin, Y. Xin, M. Suga, G. Han, T. Kuang and J. R. Shen, Science, 2019, 363, eaav0365.

    Article  CAS  PubMed  Google Scholar 

  81. G. D. Scholes, G. R. Fleming, A. Olaya-Castro and R. Van Grondelle, Nat. Chem., 2011, 3, 763–774.

    Article  CAS  PubMed  Google Scholar 

  82. P. Malý, A. T. Gardiner, R. J. Cogdell, R. van Grondelle and T. Mančal, Phys. Chem. Chem. Phys., 2018, 20, 4360–4372.

    Article  PubMed  PubMed Central  Google Scholar 

  83. T. B. Arp, J. Kistner-Morris, V. Aji, R. J. Cogdell, R. van Grondelle and N. M. Gabor, Science, 2020, 368, 1490–1495.

    Article  CAS  PubMed  Google Scholar 

  84. M. J. Llansola-Portoles, F. Li, P. Xu, S. Streckaite, C. Ilioaia, C. Yang, A. Gall, A. A. Pascal, R. Croce and B. Robert, Biochim. Biophys. Acta, Bioenerg., 2020, 1861, 148078.

    Article  CAS  Google Scholar 

  85. C. D. P. Duffy, J. Chmeliov, M. Macernis, J. Sulskus, L. Valkunas and A. V. Ruban, J. Phys. Chem. B, 2013, 117, 10974–10986.

    Article  CAS  PubMed  Google Scholar 

  86. K. F. Fox, V. Balevicius, J. Chmeliov, L. Valkunas, A. V. Ruban and C. D. P. Duffy, Phys. Chem. Chem. Phys., 2017, 19, 22957–22968.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road E1 4NS, London, UK

    Francesco Saccon & Alexander V. Ruban

  2. Institute of Physics, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic

    Milan Durchan & Tomáš Polívka

Authors
  1. Francesco Saccon
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Milan Durchan
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Tomáš Polívka
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Alexander V. Ruban
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Alexander V. Ruban.

Additional information

Electronic supplementary information (ESI) available: Chlorophyll QY absorption analysis; low-temperature fluorescence spectra of unquenched LHCII. See DOI: 10.1039/D0PP00174K

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 License, which permits any non-commercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc/3.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saccon, F., Durchan, M., Polívka, T. et al. The robustness of the terminal emitter site in major LHCII complexes controls xanthophyll function during photoprotection. Photochem Photobiol Sci 19, 1308–1318 (2020). https://doi.org/10.1039/d0pp00174k

Download citation

  • Received: 04 May 2020

  • Accepted: 12 August 2020

  • Published: 27 October 2020

  • Issue Date: October 2020

  • DOI: https://doi.org/10.1039/d0pp00174k

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.