Skip to main content

Advertisement

SpringerLink
Go to cart
  1. Home
  2. Photochemical & Photobiological Sciences
  3. Article
Aryl dechlorination and defluorination with an organic super-photoreductant
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Photoredox catalysis powered by triplet fusion upconversion: arylation of heteroarenes

18 March 2022

Jorge Castellanos-Soriano, Daniel Álvarez-Gutiérrez, … Raúl Pérez-Ruiz

Photoinduced three-component coupling reactions of electron deficient alkenes, dienes and active methylene compounds

01 August 2018

Hajime Maeda, Hiroshi Takayama & Masahito Segi

Photosensitized selective semi-oxidation of tetrahydroisoquinoline: a singlet oxygen path

18 May 2022

Mahzad Yaghmaei, Martin Villanueva, … Juan C. Scaiano

Visible light-catalyzed fluoroalkylation reactions of free aniline derivatives

20 July 2021

Beatriz Lantaño, Damian E. Yerien, … Al Postigo

Photocatalytic reactions of fluoroalkyl iodides with alkenes

01 January 2023

G. I. Chernov, V. V. Levin & A. D. Dilman

Visible light-mediated NHCs and photoredox co-catalyzed radical 1,2-dicarbonylation of alkenes for 1,4-diketones

02 September 2022

Lihong Wang, Jiaqiong Sun, … Qian Zhang

Visible-light-driven radical Friedländer hetero-annulation of 2-aminoaryl ketone and α-methylene carbonyl compound via organic dye fluorescein through a single-electron transfer (SET) pathway

15 December 2022

Farzaneh Mohamadpour

Photocyclization of diarylethenes: the effect of imidazole on the oxidative photodegradation process

01 May 2019

A. V. Zakharov, A. G. Lvov, … V. Z. Shirinian

Reactivity of substrates with multiple competitive reactive sites toward NBS under neat reaction conditions promoted by visible light

03 June 2021

Blaž Grjol & Marjan Jereb

Download PDF
  • PARER
  • Open Access
  • Published: 27 October 2020

Aryl dechlorination and defluorination with an organic super-photoreductant

  • Felix Glaser1,
  • Christopher B. Larsen1,
  • Christoph Kerzig1 &
  • …
  • Oliver S. Wenger1 

Photochemical & Photobiological Sciences volume 19, pages 1035–1041 (2020)Cite this article

  • 253 Accesses

  • 28 Citations

  • 14 Altmetric

  • Metrics details

Abstract

Direct excitation of the commercially available super-electron donor tetrakis(dimethylamino)ethylene (TDAE) with light-emitting diodes at 440 or 390 nm provides a stoichiometric reductant that is able to reduce aryl chlorides and fluorides. The method is very simple and requires only TDAE, substrate, and solvent at room temperature. The photoactive excited state of TDAE has a lifetime of 17.3 ns in cyclo-hexane at room temperature and an oxidation potential of ca. -3.4 V vs. SCE. This makes TDAE one of the strongest photoreductants able to operate on the basis of single excitation with visible photons. Direct substrate activation occurs in benzene, but acetone is reduced by photoexcited TDAE and substrate reduction takes place by a previously unexplored solvent radical anion mechanism. Our work shows that solvent can have a leveling effect on the photochemically available redox power, reminiscent of the pH-leveling effect that solvent has in acid-base chemistry

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

Notes and References

  1. C. K. Prier, D. A. Rankic and D. W. C. MacMillan, Chem. Rev., 2013, 113, 5322–5363.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. K. L. Skubi, T. R. Blum and T. P. Yoon, Chem. Rev., 2016, 116, 10035–10074.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. B. G. McCarthy, R. M. Pearson, C. H. Lim, S. M. Sartor, N. H. Damrauer and G. M. Miyake, J. Am. Chem. Soc., 2018, 140, 5088–5101.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. K. Li, Q. Y. Wan, C. Yang, X. Y. Chang, K. H. Low and C. M. Che, Angew. Chem., Int. Ed., 2018, 57, 14129–14133.

    CAS  Google Scholar 

  5. L. A. Biildt and O. S. Wenger, Angew. Chem., Int. Ed., 2017, 56, 5676–5682.

  6. E. H. Discekici, N. J. Treat, S. O. Poelma, K. M. Mattson, Z. M. Hudson, Y. D. Luo, C. J. Hawker and J. R. de Alaniz, Chem. commun., 2015, 51, 11705–11708.

    CAS  Google Scholar 

  7. S. B. Harkins and J. C. Peters, J. Am. Chem. Soc., 2005, 127, 2030–2031.

  8. F. Speck, D. Rombach and H.-A. Wagenknecht, Beilstein J. Org. Chem., 2019, 15, 52–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. I. Ghosh, R. S. Shaikh and B. Konig, Angew. Chem., Int. Ed., 2017, 56, 8544–8549.

    CAS  Google Scholar 

  10. M. Marchini, G. Bergamini, P. G. Cozzi, P. Ceroni and V. Balzani, Angew. Chem., Int. Ed., 2017, 56, 12820–12821.

    CAS  Google Scholar 

  11. J. H. Shon, S. Sittel and T. S. Teets, ACS Catal, 2019, 9, 8646–8658.

    CAS  Google Scholar 

  12. P. Herr, F. Glaser, L. A. Biildt, C. B. Larsen and O. S. Wenger, J. Am. Chem. Soc., 2019, 141, 14394–14402.

    CAS  PubMed  Google Scholar 

  13. V. K. Singh, C. Yu, S. Badgujar, Y Kim, Y Kwon, D. Kim, J. Lee, T. Akhter, G. Thangavel, L. S. Park, J. Lee, P. C. Nandajan, R. Wannemacher, B. Milian-Medina, L. Luer, K. S. Kim, J. Gierschner and M. S. Kwon, Nat. Catal, 2018, 1, 794–804.

    CAS  Google Scholar 

  14. E. Speckmeier, T. G. Fischer and K. Zeitler, J. Am. Chem. Soc., 2018, 140, 15353–15365.

    CAS  PubMed  Google Scholar 

  15. B. L. Buss, C.-H. Lim and G. M. Miyake, Angew. Chem., 2020, 59, 3209–3217.

    CAS  Google Scholar 

  16. X. Pan, C. Fang, M. Fantin, N. Malhotra, W. Y So, L. A. Peteanu, A. A. Isse, A. Gennaro, P. Liu and K Matyjaszewski, J. Am. Chem. Soc., 2016, 138, 2411–2425.

    CAS  PubMed  Google Scholar 

  17. M. Brasholz, Angew. Chem., Int. Ed., 2017, 56, 10280–10281.

  18. B. K. Qiao and Z. Y Jiang, ChemPhotoChem, 2018, 2, 703– 714.

  19. M. Claros, F. Ungeheuer, F. Franco, V. Martin-Diaconescu, A. Casitas and J. Lloret-Fillol, Angew. Chem., Int. Ed., 2019, 58, 1869–1874.

    Google Scholar 

  20. F. Glaser, C. Kerzig and O. S. Wenger, Angew. Chem., Int. Ed., 2020, 59, 10266–10284.

    CAS  Google Scholar 

  21. C. Kerzig and O. S. Wenger, Chem. Sci., 2018, 9, 6670–6678.

  22. M. Majek, U. Faltermeier, B. Dick, R. Perez-Ruiz and A. Jacobi von Wangelin, Chem. - Eur. J., 2015, 21, 15496– 15501.

  23. C. G. López-Calixto, M. Liras, V. A. de la Peña O’Shea and R. Pérez-Ruiz, Appl. Catal, B, 2018, 237, 18–23.

    Google Scholar 

  24. B. D. Ravetz, A. B. Pun, E. M. Churchill, D. N. Congreve, T. Rovis and L. M. Campos, Nature, 2019, 565, 343–346.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. C. Kerzig, X. Guo and O. S. Wenger, J. Am. Chem. Soc., 2019, 141, 2122–2127.

    CAS  PubMed  Google Scholar 

  26. I. Ghosh, T. Ghosh, J. I. Bardagi and B. Konig, Science, 2014, 346, 725–728.

    CAS  PubMed  Google Scholar 

  27. I. Ghosh and B. Konig, Angew. Chem., Int. Ed., 2016, 55, 7676–7679.

  28. M. Neumeier, D. Sampedro, M. Májek, V. A. de la Peña O’Shea, A. Jacobi von Wangelin and R. Pérez-Ruiz, Chem. -Eur. J., 2018, 24, 105–108.

    CAS  PubMed  Google Scholar 

  29. L. Zeng, T. Liu, C. He, D. Y. Shi, F. L. Zhang and C. Y. Duan, J. Am. Chem. Soc., 2016, 138, 3958–3961.

    CAS  PubMed  Google Scholar 

  30. C. Kerzig and M. Goez, Chem. Sci., 2016, 7, 3862–3868.

  31. R. Naumann, C. Kerzig and M. Goez, Chem. Sci., 2017, 8, 7510–7520.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. I. A. MacKenzie, L. Wang, N. P. R. Onuska, O. F. Williams, K. Begam, A. M. Moran, B. D. Dunietz and D. A. Nicewicz, Nature, 2020, 580, 76–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. L. Hammarstrom, Acc. Chem. Res., 2015, 48, 840–850.

  34. S. S. Shukla and J. F. Rusling, J. Phys. Chem., 1985, 89, 3353–3358.

  35. L. Capaldo, L. L. Quadri and D. Ravelli, Angew. Chem., Int. Ed., 2019, 58, 17508–17510.

    CAS  Google Scholar 

  36. J. P. Barham and B. Konig, Angew. Chem., Int. Ed., 2020, DOI: 10.1002/anie.201913767.

  37. H. Kim, H. Kim, T. H. Lambert and S. Lin, J. Am. Chem. Soc., 2020, 142, 2087–2092.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. N. G. W. Cowper, C. P. Chernowsky, O. P. Williams and Z. K. Wickens, J. Am. Chem. Soc., 2020, 142, 2093–2099.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. N. T. La Porte, J. F. Martinez, S. Chaudhuri, S. Hedstrom, V. S. Batista and M. R. Wasielewski, Coord. Chem. Rev., 2018, 361, 98–119.

    Google Scholar 

  40. J. Haimerl, I. Ghosh, B. Konig, J. Vogelsang and J. M. Lupton, Chem. Sci., 2019, 10, 681–687.

    CAS  PubMed  Google Scholar 

  41. M. Neumann, S. Füldner, B. Konig and K. Zeitler, Angew. Chem., Int. Ed., 2011, 50, 951–954.

    CAS  Google Scholar 

  42. K. Tahara and Y. Hisaeda, Green Chem., 2011, 13, 558–561.

  43. T. Maji, A. Karmakar and O. Reiser, J. Org. Chem., 2011, 76, 736–739.

    CAS  PubMed  Google Scholar 

  44. G. Revol, T. McCallum, M. Morin, F. Gagosz and L. Barriault, Angew. Chem., Int. Ed., 2013, 52, 13342–13345.

    CAS  Google Scholar 

  45. H. Kim and C. Lee, Angew. Chem., Int. Ed., 2012, 51, 12303–12306.

  46. S. O. Poelma, G. L. Burnett, E. H. Discekici, K. M. Mattson, N. J. Treat, Y D. Luo, Z. M. Hudson, S. L. Shankel, P. G. Clark, J. W. Kramer, C. J. Hawker and J. R. de Alaniz, J. Org. Chem., 2016, 81, 7155–7160.

    CAS  PubMed  Google Scholar 

  47. J. J. Devery, J. D. Nguyen, C. H. Dai and C. R. J. Stephenson, ACS Catal, 2016, 6, 5962–5967.

    CAS  Google Scholar 

  48. L. Zhang, Z.-Q. Wu and L. Jiao, Angew. Chem., 2020, 59, 2095–2099.

    CAS  Google Scholar 

  49. H. L. Yin, Y Jin, J. E. Hertzog, K. C. Mullane, P. J. Carroll, B. C. Manor, J. M. Anna and E. J. Schelter, J. Am. Chem. Soc., 2016, 138, 16266–16273.

    CAS  PubMed  Google Scholar 

  50. E. Cahard, F. Schoenebeck, J. Gamier, S. P. Y Cutulic, S. Z. Zhou and J. A. Murphy, Angew. Chem., Int. Ed., 2012, 51, 3673–3676.

    CAS  Google Scholar 

  51. S. S. Hanson, E. Doni, K. T. Traboulsee, G. Coulthard, J. A. Murphy and C. A. Dyker, Angew. Chem., Int. Ed., 2015, 54, 11236–11239.

    CAS  Google Scholar 

  52. R. Matsubara, T. Yabuta, U. M. Idros, M. Hayashi, F. Ema, Y Kobori and K. Sakata, J. Org. Chem., 2018, 83, 9381–9390.

    CAS  PubMed  Google Scholar 

  53. L. Zhang and L. Jiao, J. Am. Chem. Soc., 2019, 141, 9124–9128.

  54. S. Jin, H. T. Dang, G. C. Haug, R. He, V. D. Nguyen, V. T. Nguyen, H. D. Arman, K. S. Schanze and O. V. Larionov, J Am. Chem. Soc., 2020, 142, 1603–1613.

  55. Q. M. Wang, M. Poznik, M. Y Li, P. J. Walsh and J.J. Chruma, Adv. Synth. Catal, 2018, 360, 2854–2868.

    CAS  Google Scholar 

  56. T.-H. Ding, J.-P. Qu and Y.-B. Kang, Org. Lett., 2020, 22, 3084–3088.

    CAS  PubMed  Google Scholar 

  57. T. Fukuyama, Y Fujita, H. Miyoshi, I. Ryu, S. C. Kao and Y K. Wu, Chem. commun., 2018, 54, 5582–5585.

    CAS  Google Scholar 

  58. D. Cao, C. Yan, P. Zhou, H. Zeng and C.-J. Li, Chem. commun., 2019, 55, 767–770.

    CAS  Google Scholar 

  59. L. Pause, M. Robert and J. M. Savéant, J. Am. Chem. Soc., 1999, 121, 7158–7159.

    CAS  Google Scholar 

  60. J. Broggi, T. Terme and P. Vanelle, Angew. Chem., Int. Ed., 2014, 53, 384–413.

    CAS  Google Scholar 

  61. S. Rohrbach, R. S. Shah, T. Tuttle and J. A. Murphy, Angew. Chem., Int. Ed., 2019, 58, 11454–11458.

    CAS  Google Scholar 

  62. T. Juspin, M. Laget, T. Terme, N. Azas and P. Vanelle, Eur. J. Med. Chem., 2010, 45, 840–845.

    CAS  PubMed  Google Scholar 

  63. O. Amiri-Attou, T. Terme, M. Médebielle and P. Vanelle, Tetrahedron Lett., 2008, 49, 1016–1020.

    CAS  Google Scholar 

  64. S. Ait-Mohand, N. Takechi, M. Médebielle and W. R. Dolbier, Org. Lett., 2001, 3, 4271–4273.

    CAS  PubMed  Google Scholar 

  65. S. O’SuIIivan, E. Doni, T. Tuttle and J. A. Murphy, Angew. Chem., Int. Ed., 2014, 53, 474–478.

    Google Scholar 

  66. E. Doni, S. O’SuIIivan and J. A. Murphy, Angew. Chem., Int. Ed., 2013, 52, 2239–2242.

    CAS  Google Scholar 

  67. E. Doni, B. Mondal, S. O’Sullivan, T. Tuttle and J. A. Murphy, J Am. Chem. Soc., 2013, 135, 10934–10937.

  68. H. E. Winberg, J. R. Downing and D. D. Coffman, J Am. Chem. Soc., 1965, 87, 2054–2055.

  69. A. N. Fletcher and C. A. Heller, J Phys. Chem., 1967, 71, 1507–1518.

  70. M. Hori, K. Kimura and H. Tsubomura, Spectrochim. Acta, Part A, 1968, 24, 1397–1404.

    CAS  Google Scholar 

  71. C. Kerzig and O. S. Wenger, Chem. Sci., 2019, 10, 11023–11029.

  72. C. Burkho der, W. R. Dolbier and M. Médebielle, J. Org. Chem., 1998, 63, 5385–5394.

    Google Scholar 

  73. T Fuchigami, M. Atobe and S. Inagi, Fundamentals and Applications of Organic Electrochemistry: Synthesis, Materials, Devices, John Wiley & Sons, Chichester, West Sussex, U. K., 2015.

  74. J. Mortensen and J. Heinze, Angew. Chem., Int. Ed. Engl, 1984, 23, 84–85.

  75. A. Studer and D. P. Curran, Nat. Chem., 2014, 6, 765–773.

  76. P. J. Delaive, T. K. Foreman, C. Giannotti and D. G. Whitten, J Am. Chem. Soc., 1980, 102, 5627–5631.

  77. Y Pellegrin and F. Odobel, C R. Chim., 2017, 20, 283–295.

  78. Y Du, R. M. Pearson, C. H. Lim, S. M. Sartor, M. D. Ryan, H. S. Yang, N. H. Damrauer and G. M. Miyake, Chem. - Eur. J., 2017, 23, 10962–10968.

    CAS  PubMed  Google Scholar 

  79. D. M. Arias-Rotondo and J. K. McCusker, Chem. Soc. Rev., 2016, 45, 5803–5820.

  80. W. Sattler, M. E. Ener, J. D. Blakemore, A. A. Rachford, P. J. LaBeaume, J. W. Thackeray, J. F. Cameron, J. R. Winkler and H. B. Gray, J Am. Chem. Soc., 2013, 135, 10614–10617.

  81. C. P. Andrieux, C. Blocman and J. M. Savéant, J. Electroanal Chem., 1979, 105, 413–417.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland

    Felix Glaser, Christopher B. Larsen, Christoph Kerzig & Oliver S. Wenger

Authors
  1. Felix Glaser
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Christopher B. Larsen
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Christoph Kerzig
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Oliver S. Wenger
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Oliver S. Wenger.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/ d0pp00127a

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 License, which permits any non-commercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc/3.0/.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glaser, F., Larsen, C.B., Kerzig, C. et al. Aryl dechlorination and defluorination with an organic super-photoreductant. Photochem Photobiol Sci 19, 1035–1041 (2020). https://doi.org/10.1039/d0pp00127a

Download citation

  • Received: 04 April 2020

  • Accepted: 23 June 2020

  • Published: 27 October 2020

  • Issue Date: August 2020

  • DOI: https://doi.org/10.1039/d0pp00127a

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • Your US state privacy rights
  • How we use cookies
  • Your privacy choices/Manage cookies
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.