Skip to main content
Log in

Autofluorescence changes of tomato surface tissues during overripening

  • Communication
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

We investigated the autofluorescence of tomato surface tissues during overripening at 25 °C for 13 days. Microscopic images and fluorescence spectra of tissues, including the epidermis and cuticle, were examined (excitation at 360 nm), revealing that the autofluorescence changes were related to the epidermis, particularly the fluorophores in the cuticle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. A. Lai, E. Santangelo, G. P. Soressi and R. Fantoni, Analysis of the main secondary metabolites produced in tomato (Lycopersicon esculentum, Mill.) epicarp tissue during fruit ripening using fluorescence techniques, Postharvest Biol. Technol., 2007, 43, 335–342.

    CAS  Google Scholar 

  2. K. Konagaya, D. F. Al Riza, S. Nie, M. Yoneda, T. Hirata, N. Takahashi, M. Kuramoto, Y. Ogawa, T. Suzuki and N. Kondo, Monitoring mature tomato (red stage) quality during storage using ultraviolet-induced visible fluorescence image, Postharvest Biol. Technol., 2020, 160, 111031.

    Article  CAS  Google Scholar 

  3. B.-K. Cho, M. S. Kim, I.-S. Baek, D.-Y. Kim, W.-H. Lee, J. Kim, H. Bae and Y.-S. Kim, Detection of cuticle defects on cherry tomatoes using hyperspectral fluorescence imagery, Postharvest Biol. Technol., 2013, 76, 40–49.

    Article  Google Scholar 

  4. L. B. B. Martin and J. K. C. Rose, There’s more than one way to skin a fruit: formation and functions of fruit cuticles, J. Exp. Bot., 2014, 65, 4639–4651.

    Article  CAS  Google Scholar 

  5. E. Domínguez, L. España, G. López-Casado, J. Cuartero and A. Heredia, Biomechanics of isolated tomato (Solanum lyco-persicum) fruit cuticles during ripening: the role of flavonoids, Funct. Plant Biol., 2009, 36, 613–620.

    Article  Google Scholar 

  6. A. Batu and A. K. Thompson, Effects of modified atmosphere packaging on post harvest qualities of pink tomatoes, Turk. J. Agric. For., 1998, 22, 365–372.

    Google Scholar 

  7. A. Adato, T. Mandel, S. Mintz-Oron, I. Venger, D. Levy, M. Yativ, E. Domínguez, Z. Wang, R. C. H. De Vos, R. Jetter, L. Schreiber, A. Heredia, I. Rogachev and A. Aharoni, Fruit-surface flavonoid accumulation in tomato is controlled by a SlMYB12-regulated transcriptional network, PLoS Genet, 2009, 5, e1000777.

  8. L. Laguna, C. G. Casado and A. Heredia, Flavonoid biosynthesis in tomato fruit cuticles after in vivo incorporation of 3H-phenylalanine precursor, Physiol. Plant., 1999, 105, 491–498.

    Article  CAS  Google Scholar 

  9. G. M. Hunt and E. A. Baker, Phenolic constituents of tomato fruit cuticles, Phytochemistry, 1980, 19,1415–1419.

  10. S. Bauer, E. Schulte and H.-P. Thier, Composition of the surface wax from tomatoes: I. Identification of the components by GC/MS, Eur. Food Res. Technol., 2004, 219, 223228.

    Article  CAS  Google Scholar 

  11. S. Bauer, E. Schulte and H.-P. Thier, Composition of the surface wax from tomatoes: II. Quantification of the components at the ripe red stage and during ripening, Eur. Food Res. Technol., 2004, 219, 487491.

    Article  CAS  Google Scholar 

  12. E. Domínguez, J. Cuartero and A. Heredia, An overview on plant cuticle biomechanics, Plant Sci., 2011, 181, 7784.

    Article  Google Scholar 

  13. Q. Zhu, C. He, R. Lu, F. Mendoza and H. Cen, Ripeness evaluation of ‘Sun Bright’ tomato using optical absorption and scattering properties, Postharvest Biol. Technol., 2015, 103, 2734.

    Article  Google Scholar 

  14. P. Talamond, J.-L. Verdeil and G. Conéjéro, Secondary metabolite localization by autofluorescence in living plant cells, Molecules, 2015, 20, 50245037.

    Article  CAS  Google Scholar 

  15. A. Solovchenko and M. Merzlyak, Optical properties and contribution of cuticle to UV protection in plants: experiments with apple fruit, Photochem. Photobiol. Sci., 2003, 2, 861866.

    Article  CAS  Google Scholar 

  16. L. España, J. A. Heredia-Guerrero, P. Segado, J. J. Benítez, A. Heredia and E. Domínguez, Biomechanical properties of the tomato (Solanum lycopersicum) fruit cuticle during development are modulated by changes in the relative amounts of its components, New Phytol., 2014, 202, 790802.

    PubMed  Google Scholar 

  17. H. Ayvaz, A. M. Santos and L. E. Rodriguez-Saona, Understanding Tomato Peelability, Compr. Rev. Food Sci. Food Saf., 2016, 15, 619632.

    Article  Google Scholar 

  18. S. R. Muir, G. J. Collins, S. Robinson, S. Hughes, A. Bovy, C. H. Ric De Vos, A. J. van Tunen and M. E. Verhoeyen, Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols, Nat. Biotechnol., 2001, 19, 470474.

    Article  CAS  Google Scholar 

  19. G. J. Buda, T Isaacson, A. J. Matas, D. J. Paolillo and J. K. C. Rose, Three-dimensional imaging of plant cuticle architecture using confocal scanning laser microscopy, Plant J., 2009, 60, 378–385.

    Article  CAS  Google Scholar 

  20. N. Kondo, Machine vision based on optical properties of biomaterials for fruit grading system, Environ. Control Biol., 2006, 44, 151159.

    Article  Google Scholar 

  21. Y. Yang, B. Zhou, J. Zhang, C. Wang, C. Liu, Y. Liu, X. Zhu and X. Ren, Relationships between cuticular waxes and skin greasiness of apples during storage, Postharvest Biol. Technol., 2017, 131, 55–67.

    Article  CAS  Google Scholar 

  22. Y. Maréchal, Configurations adopted by H2O molecules: Results from IR spectroscopy, Faraday Discuss., 1996, 103, 349–361.

    Article  Google Scholar 

  23. Y. Maréchal and A. Chamel, Water in a biomembrane by infrared spectrometry, J. Phys. Chem., 1996, 100, 8551–8555.

    Article  Google Scholar 

  24. Y. Maréchal and A. Chamel, Interaction configurations of H2O molecules absorbed in isolated plant cuticles by infrared spectrometry, Biospectroscopy, 1997, 3, 143–153.

    Article  Google Scholar 

  25. R. T. Furbank, Internal recycling of respiratory CO2 in pods of chickpea (Cicer arietinum L.): the role of pod wall, seed coat, and embryo, J. Exp. Bot., 2004, 55, 1687–1696.

    Article  CAS  Google Scholar 

  26. S. Mintz-Oron, T. Mandel, I. Rogachev, L. Feldberg, O. Lotan, M. Yativ, Z. Wang, R. Jetter, I. Venger, A. Adato and A. Aharoni, Gene expression and metabolism in tomato fruit surface tissues, Plant Physiol., 2008, 147, 823–851.

    Article  CAS  Google Scholar 

  27. A. J. Matas, T. H. Yeats, G. J. Buda, Y. Zheng, S. Chatterjee, T. Tohge, L. Ponnala, A. Adato, A. Aharoni, R. Stark, A. R. Fernie, Z. Fei, J. J. Giovannoni and J. K. C. Rose, Tissue- and cell-type specific transcriptome profiling of expanding tomato fruit provides insights into metabolic and regulatory specialization and cuticle formation, Plant Cell, 2011, 23, 3893–3910.

    Article  CAS  Google Scholar 

  28. J.-P. Renaudin, C. Deluche, C. Cheniclet, C. Chevalier and N. Frangne, Cell layer-specific patterns of cell division and cell expansion during fruit set and fruit growth in tomato pericarp, J. Exp. Bot., 2017, 68, 1613–1623.

    Article  CAS  Google Scholar 

  29. T. H. Yeats, G. J. Buda, Z. Wang, N. Chehanovsky, L. C. Moyle, R. Jetter, A. A. Schaffer and J. K. C. Rose, The fruit cuticles of wild tomato species exhibit architectural and chemical diversity, providing a new model for studying the evolution of cuticle function, Plant J., 2012, 69, 655–666.

    Article  CAS  Google Scholar 

  30. S. Chatterjee, S. Sarkar, J. Oktawiec, Z. Mao, O. Niitsoo and R. E. Stark, Isolation and biophysical study of fruit cuticles, J. Visualized Exp., 2012, e3529.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiji Konagaya.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/d0pp00125b

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konagaya, K., Riza, D.F.A., Ogawa, Y. et al. Autofluorescence changes of tomato surface tissues during overripening. Photochem Photobiol Sci 19, 879–884 (2020). https://doi.org/10.1039/d0pp00125b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/d0pp00125b

Navigation