Skip to main content

Advertisement

Log in

Antimicrobial photodynamic therapy fighting polymicrobial infections – a journey from in vitro to in vivo

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Rapidly evolving multidrug resistance renders conventional antimicrobial strategies increasingly inefficient. This urges the exploration of alternative strategies with a lower potential of resistance development to control microbial infections. A promising option is antimicrobial photodynamic therapy (aPDT), especially in the setting of wound infections. In this study its effectiveness was tested as a treatment option for polymicrobially infected wounds in both in vitro and in vivo models. First, aPDT was applied to wound-relevant Gram-positive and Gram-negative bacteria in planktonic culture as the standard in vitro test system and compared different media to show a possible dependency of the therapy on the surrounding environment. In a second step, aPDT was investigated in an in vitro model mimicking the wound bed conditions using fibrin-coated culture plates. Finally, we tested aPDT in vivo in a polymicrobial infected wound healing model in immunocompromised BALB/c mice. In vitro, it was shown that the bactericidal effectiveness of aPDT was strongly dependent on the surrounding environment of the phototoxic reaction. In vivo, the significant delay in wound healing induced by polymicrobial infection was drastically diminished by a two-times application of aPDT using 100 μM methylene blue (generally regarded as safe for topical application on human skin) and 24 J cm−2 pulsed red LED light. Our experiments suggest that aPDT is capable of significantly improving wound healing also in complicated polymicrobially infected wound situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WHO, Antimicrobial resistance: global report on surveillance 2014. 2014, World Health Organization, p. 257, http://www.who.int.

  2. R. I. Aminov, A brief history of the antibiotic era: lessons learned and challenges for the future, Front. Microbiol., 2010, 1, 134, DOI: 10.3389/fmicb.2010.00134.

    Article  PubMed  PubMed Central  Google Scholar 

  3. R. Laxminarayan, et al., Access to effective antimicrobials: a worldwide challenge, Lancet, 2016, 387(10014), 168–175, DOI: 10.1016/S0140-6736(15)00474-2.

    Article  PubMed  Google Scholar 

  4. M. J. Renwick, V. Simpkin and E. Mossialos, in Targeting innovation in antibiotic drug discovery and development: The need for a One Health - One Europe - One World Framework, Copenhagen, Denmark, 2016.

  5. A. Cassini, et al., Attributable deaths and disabilityadjusted life-years caused by infections with antibioticresistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis, Lancet Infect. Dis., 2019, 19(1), 56–66, DOI: 10.1016/S1473-3099(18) 30605-4.

    Article  PubMed  PubMed Central  Google Scholar 

  6. O. Raab, Ueber die Wirkung fluorescirender Stoffe auf Infusorien, Verlag nicht ermittelbar, 1900.

  7. M. D. Daniell and J. S. Hill, A history of photodynamic therapy, Aust. N. Z.J. Surg., 1991, 61(5), 340–348.

    Article  CAS  PubMed  Google Scholar 

  8. G. O. Schenck, Photosensitization, Ind. Eng. Chem., 1963, 55(6), 40–43, DOI: 10.1021/ie50642a006.

    Article  CAS  Google Scholar 

  9. K. Gollnick, Type II Photooxygenation Reactions in Solution, in Advances in Photochemistry, 1968.

  10. L. Huang, et al., Type I and Type II mechanisms of antimicrobial photodynamic therapy: an in vitro study on Gram-negative and Gram-positive bacteria, Lasers Surg. Med., 2012, 44(6), 490–499, DOI: 10.1002/lsm.22045.

    Article  PubMed  PubMed Central  Google Scholar 

  11. M. Wainwright, Photodynamic antimicrobial chemotherapy (PACT), J. Antimicrob. Chemother., 1998, 42(1), 13–28.

    Article  CAS  PubMed  Google Scholar 

  12. N. Kashef and M. R. Hamblin, Can microbial cells develop resistance to oxidative stress in antimicrobial photodynamic inactivation?, Drug Resist. Updates, 2017, 31, 31–42, DOI: 10.1016/j.drup.2017.07.003.

    Article  Google Scholar 

  13. A. Felgentrager, et al., Hydrogen bond acceptors and additional cationic charges in methylene blue derivatives: photophysics and antimicrobial efficiency, BioMed Res. Int., 2013, 2013, 482167, DOI: 10.1155/2013/482167.

    Article  PubMed  CAS  Google Scholar 

  14. A. S. Garcez and M. R. Hamblin, Methylene Blue and Hydrogen Peroxide for Photodynamic Inactivation in Root Canal - A New Protocol for Use in Endodontics, Eur. Endod. J., 2017, 2(1), 29, DOI: 10.5152/eej.2017.17023.

    Article  PubMed  Google Scholar 

  15. V. Klepac-Ceraj, et al., Photodynamic effects of methylene blue-loaded polymeric nanoparticles on dental plaque bacteria, Lasers Surg. Med., 2011, 43(7), 600–606, DOI: 10.1002/lsm.21069.

    Article  PubMed  PubMed Central  Google Scholar 

  16. S. M. Yang, et al., Hydrogen Peroxide Enhances the Antibacterial Effect of Methylene Blue-based Photodynamic Therapy on Biofilm-forming Bacteria, Photochem. Photobiol., 2018, 95, 833–838, DOI: 10.1111/php.13056.

    Article  PubMed  CAS  Google Scholar 

  17. F. L. Esteban Florez, et al., Bioluminescence Analysis of Antibacterial Photodynamic Therapy Using Methylene Blue Mediated by Low-Intensity Level Laser Against Cariogenic Biofilms, Photomed. Laser Surg., 2018, 36(5), 258–265, DOI: 10.1089/pho.2017.4326.

    Article  CAS  PubMed  Google Scholar 

  18. F. Freire, et al., Photodynamic therapy of oral Candida infection in a mouse model, J. Photochem. Photobiol., B, 2016, 159, 161–168, DOI: 10.1016/j.jphotobiol.2016.03.049.

    Article  CAS  Google Scholar 

  19. P. V. Araujo, et al., Antimicrobial effect of photodynamic therapy in carious lesions in vivo, using culture and realtime PCR methods, Photodiagn. Photodyn. Then., 2015, 12(3), 401–407, DOI: 10.1016/j.pdpdt.2015.06.003.

    Article  CAS  Google Scholar 

  20. M. Marcolan De Mello, et al., Antimicrobial photodynamic therapy against clinical isolates of carbapenem-susceptible and carbapenem-resistant Acinetobacter baumannii, Lasers Med. Scl, 2019, 34, 1755–1761, DOI: 10.1007/s10103-019-02773-w.

    Article  Google Scholar 

  21. N. Kashef, et al., Photodynamic inactivation of drug-resistant bacteria isolated from diabetic foot ulcers, Iran.J. Microbiol., 2011, 3(1), 36–41. PMC3279799.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. A. H. C. Pereira, et al., Methylene blue internalization and photodynamic action against clinical and ATCC Pseudomonas aeruginosa and Staphyloccocus aureus strains, Photodiagn. Photodyn. Ther., 2018, 22, 43–50, DOI: 10.1016/j.pdpdt.2018.02.008.

    Article  CAS  Google Scholar 

  23. S. R. de Annunzio, et al., Susceptibility of Enterococcus faecalis and Propionibacterium acnes to antimicrobial photodynamic therapy, J. Photochem. Photobiol., B, 2018, 178, 545–550, DOI: 10.1016/j.jphotobiol.2017.11.035.

    Article  CAS  Google Scholar 

  24. M. D. Mastropaolo, et al., Synergy in polymicrobial infections in a mouse model of type 2 diabetes, Infect. Immun., 2005, 73(9), 6055–6063, DOI: 10.1128/IAI.73.9.6055-6063.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. K. J. Hendricks, et al., Synergy between Staphylococcus aureus and Pseudomonas aeruginosa in a rat model of complex orthopaedic wounds, J. Bone Jt. Surg., Am. Vol., 2001, 83(6), 855–861, DOI: 10.2106/00004623-200106000-00006.

    Article  CAS  Google Scholar 

  26. T. Dalton, et al., An in vivo polymicrobial biofilm wound infection model to study interspecies interactions, PLoS One, 2011, 6(11), e27317, DOI: 10.1371/journal. pone.0027317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. N. Andreu, et al., Optimisation of bioluminescent reporters for use with mycobacteria, PLoS One, 2010, 5(5), e10777, DOI: 10.1371/journal.pone.0010777.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. M. E. Starr, et al., A new cecal slurry preparation protocol with improved long-term reproducibility for animal models of sepsis, PLoS One, 2014, 9(12), e115705, DOI: 10.1371/journal.pone. 0115705.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. A. F. Zuluaga, et al., Neutropenia induced in outbred mice by a simplified low-dose cyclophosphamide regimen: characterization and applicability to diverse experimental models of infectious diseases, BMC Infect. Dis., 2006, 6, 55, DOI: 10.1186/1471–2334-6-55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. F. Gad, et al., Targeted photodynamic therapy of established soft-tissue infections in mice, Photochem. Photobiol. Scl., 2004, 3(5), 451–458, DOI: 10.1039/b311901g.

    Article  CAS  Google Scholar 

  31. Z. Malik, H. Ladan and Y. Nitzan, Photodynamic inactivation of Gram-negative bacteria: problems and possible solutions, J. Photochem. Photobiol., B, 1992, 14(3), 262–266, DOI: 10.1016/1011-1344(92)85104-3.

    Article  CAS  Google Scholar 

  32. M. Wainwright, et al., Photobactericidal activity of phenothiazinium dyes against methicillin-resistant strains of Staphylococcus aureus, FEMS Microbiol. Lett., 1998, 160(2), 177–181, DOI: 10.1111/j.1574-6968.1998.tb12908.x.

    Article  CAS  PubMed  Google Scholar 

  33. G. Broughton, 2nd, J. E. Janis and C. E. Attinger, The basic science of wound healing, Plast. Reconstr. Surg., 2006, 117(7 Suppl), 12S–34S, DOI: 10.1097/01. prs.0000225430.42531.c2.

  34. H. Ceri, et al., The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms, J. Clin. Microbiol., 1999, 37(6), 1771–1776. PMC84946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. S. Shani, M. Friedman and D. Steinberg, The anticariogenic effect of amine fluorides on Streptococcus sobrinus and glucosyltransferase in biofilms, Caries Res, 2000, 34(3), 260–267, DOI: 10.1159/000016600.

    Article  CAS  PubMed  Google Scholar 

  36. T. Dai, et al., Photodynamic therapy for Acinetobacter baumannii burn infections in mice, Antimicrob. Agents Chemother., 2009, 53(9), 3929–3934, DOI: 10.1128/AAC.00027-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. L. R. Hoffman, et al., Selection for Staphylococcus aureus small-colony variants due to growth in the presence of Pseudomonas aeruginosa, Proc. Natl. Acad. Sci. U. S. A., 2006, 103(52), 19890–19895, DOI: 10.1073/pnas.0606756104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. A. P. Magalhaes, S. P. Lopes and M. O. Pereira, Insights into Cystic Fibrosis Polymicrobial Consortia: The Role of Species Interactions in Biofilm Development, Phenotype, and Response to In-Use Antibiotics, Front. Microbiol., 2016, 7, 2146, DOI: 10.3389/fmicb.2016.02146.

    PubMed  Google Scholar 

  39. Z. M. Xiong, et al., Anti-Aging Potentials of Methylene Blue for Human Skin Longevity, Sci. Rep., 2017, 7(1), 2475, DOI: 10.1038/S41598-017-02419-3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. A. V. Corazza, et al., Photobiomodulation on the angiogenesis of skin wounds in rats using different light sources, Photomed. Laser Surg., 2007, 25(2), 102–106, DOI: 10.1089/pho.2006.2011.

    Article  PubMed  Google Scholar 

  41. Y. Li, et al., Effects of 630 nm Red and 460 nm Blue Light Emitting Diode Irradiation on Healing of the Skin Wound in Japanese Big-ear White Rabbit, Zhongguo Yixue Kexueyuan Xuebao, 2017, 39(3), 301–306, DOI: 10.3881/j. issn.1000-503X.2017.03.001.

    PubMed  Google Scholar 

  42. P. Dungel, et al., Low level light therapy by LED of different wavelength induces angiogenesis and improves ischemic wound healing, Lasers Surg. Med., 2014, 46(10), 773–780, DOI: 10.1002/lsm.22299.

    Article  PubMed  Google Scholar 

  43. M. H. de Vasconcelos Catao, et al., Effects of red laser, infrared, photodynamic therapy, and green LED on the healing process of third-degree burns: clinical and histological study in rats, Lasers Med. Sci., 2015, 30(1), 421–428, DOI: 10.1007/S10103-014-1687-0.

    Article  PubMed  Google Scholar 

  44. B. Kofler, et al., Photodynamic Effect of Methylene Blue and Low Level Laser Radiation in Head and Neck Squamous Cell Carcinoma Cell Lines, Int. J. Mol. Sci., 2018, 19(4), 1107, DOI: 10.3390/ijms19041107.

    Article  PubMed Central  CAS  Google Scholar 

  45. C. Dunnill, et al., Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process, Int. Wound J., 2017, 14(1), 89–96, DOI: 10.1111/iwj.12557.

    Article  PubMed  Google Scholar 

  46. E. M. Tuite and J. M. Kelly, Photochemical interactions of methylene blue and analogues with DNA and other biological substrates, J. Photochem. Photobiol., B, 1993, 21(2–3), 103–124, DOI: 10.1016/1011-1344(93) 80173-7.

    Article  CAS  Google Scholar 

  47. J. P. Tardivo, et al., Methylene blue in photodynamic therapy: From basic mechanisms to clinical applications, Photodiagn. Photodyn. Ther., 2005, 2(3), 175–191, DOI: 10.1016/S1572-1000(05)00097-9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Dungel.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/d0pp00108b

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karner, L., Drechsler, S., Metzger, M. et al. Antimicrobial photodynamic therapy fighting polymicrobial infections – a journey from in vitro to in vivo. Photochem Photobiol Sci 19, 1332–1343 (2020). https://doi.org/10.1039/d0pp00108b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/d0pp00108b

Navigation