Skip to main content
Log in

Does the degree of substitution on the cyclodextrin hosts impact their affinity towards guest binding?

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Although cyclodextrins have been extensively utilized in various branches of supramolecular chemistry due to their numerous attractive attributes, however, to achieve even advanced applications, they often need structural modification through substitutions of suitable functional groups at their rims. A systematic investigation on how the degree of substitution on the cyclodextrin rims affects the binding affinity for a given guest molecule has however rarely been reported, especially from the perspective of photophysical studies. Herein, we report the non-covalent interaction of a styryl based dye, LDS-798, with three different sulfobutylether beta cyclodextrin (SBEnβCD) derivatives bearing varying degrees of substitution (n), using ground state absorption, steady-state emission, excited-state lifetime and time-resolved fluorescence anisotropy measurements. The dye–host binding constant values indicate that the strength of the interaction between LDS-798 and SBEnβCD derivatives follows an increasing trend with an increasing number of tethered sulfobutylether substituents on the cyclodextrin rims, which is attributed to the gradual increase of the electrostatic interaction between the negatively charged sulfobutylether groups and the positively charged LDS-798. Excited state lifetime measurements and ionic strength dependent studies on the dye–SBEnβCD complexes further support the increased affinity between the dye and the host in the supramolecular complexes, with an increasing number of sulfobutylether substituents on the βCD rims. The obtained results suggest that the molecular recognition of LDS-798 with SBEnβCD derivatives can be tuned very effectively by varying the number of sulfobutylether substituents on the cyclodextrin rims. Considering that SBE7βCD is one of the FDA approved agents for drug formulations, the obtained results with other SBEnβCD hosts may be useful in designing selective drug delivery applications, drug formulations, and effective fluorescence on–off switches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Monti and I. Manet, Supramolecular Photochemistry of Drugs in Biomolecular Environments, Chem. Soc. Rev., 2014, 43, 4051–4067.

    Article  CAS  Google Scholar 

  2. J. M. Zayed, N. Nouvel, U. Rauwald and O. A. Scherman, Chemical Complexity—Supramolecular Self-Assembly of Synthetic and Biological Building Blocks in Water, Chem. Soc. Rev., 2010, 39, 2806–2816.

    Article  CAS  Google Scholar 

  3. D. A. Uhlenheuer, K. Petkau and L. Brunsveld, Combining Supramolecular Chemistry with Biology, Chem. Soc. Rev., 2010, 39, 2817–2826.

    Article  CAS  Google Scholar 

  4. P. J. Cragg, Supramolecular Chemistry: From Biological Inspiration to Biomedical Applications, Springer, NY, 2010.

  5. B. Rybtchinski, Adaptive Supramolecular Nanomaterials Based on Strong Noncovalent Interactions, ACS Nano, 2011, 5(9), 6791–6818.

    Article  CAS  Google Scholar 

  6. S. I. Stupp, V. LeBonheur, K. Walker, L. S. Li, K. E. Huggins, M. Keser and A. Amstutz, Supramolecular Materials: Self-Organized Nanostructures, Science, 1997, 276, 384–389.

    Article  CAS  Google Scholar 

  7. M. Sayed and H. Pal, Supramolecularly Assisted Modulations in Chromophoric Properties And Their Possible Applications: An Overview, J. Mater. Chem. C, 2016, 4, 2685–2706.

  8. M. J. Frampton and H. L. Anderson, Insulated Molecular Wires, Angew. Chem., Int. Ed., 2007, 46, 1028–1064.

    Article  CAS  Google Scholar 

  9. D. B. Amabilino, D. K. Smith and J. W. Steed, Supramolecular Materials, Chem. Soc. Rev., 2017, 46, 2404–2420.

    Article  CAS  Google Scholar 

  10. Y. Zhao, F. Sakai, L. Su, Y. Liu, K. Wei, G. Chen and M. Jiang, Progressive Macromolecular Self-Assembly: From Biomimetic Chemistry to Bio-Inspired Materials, Adv. Mater., 2013, 25, 5215–5256.

    Article  CAS  Google Scholar 

  11. A. K. H. Hirsch, F. R. Fischer and F. Diederich, Phosphate Recognition in Structural Biology, Angew. Chem., Int. Ed., 2007, 46, 338–352.

    Article  CAS  Google Scholar 

  12. G. V. Oshovsky, D. N. Reinhoudt and W. Verboom, Supramolecular Chemistry in Water, Angew. Chem., Int. Ed., 2007, 46, 2366–2393.

    Article  CAS  Google Scholar 

  13. P. Ball, Water as an Active Constituent in Cell Biology, Chem. Rev., 2008, 108, 74–108.

    Article  CAS  Google Scholar 

  14. H. Pal, Supramolecular Host-Guest Interactions: Modulations of Chromophoric Properties and Prospects, Sci. Adv. Today, 2016, 2, 25257.

  15. H.-J. Schneider, Applications of supramolecular chemistry for 21st century technology, Taylor & Francis, Boca Raton, FL, 2012.

  16. S. Onogi, H. Shigemitsu, T. Yoshii, T. Tanida, M. Ikeda, R. Kubota and I. Hamachi, In Situ Real-Time Imaging of Self-sorted Supramolecular Nanofibres, Nat. Chem., 2016, 8, 743–752.

    Article  CAS  Google Scholar 

  17. D. R. Boraste, G. Chakraborty, A. K. Ray, G. S. Shankarling and H. Pal, pH-Responsive Interaction of Fluorogenic Antimalarial Drug Quinine with Macrocyclic Host Cucurbit [7]uril: Modulations in Photophysical and Acid-Base Properties, ChemistrySelect, 2017, 2, 5128–5142.

    Article  CAS  Google Scholar 

  18. D. R. Boraste, G. Chakraborty, A. K. Ray, G. S. Shankarling and H. Pal, Supramolecular Host-Guest Interaction of Antibiotic Drug Ciprofloxacin with Cucurbit[7]Uril Macrocycle: Modulations in Photophysical Properties and Enhanced Photostability, J. Photochem. Photobiol, A, 2018, 358, 26–37.

    Article  CAS  Google Scholar 

  19. G. Chakraborty, A. K. Ray, P. K. Singh and H. Pal, A Highly Fluorescent Turn-on Probe in The Near-Infrared Region for Albumin Quantification in Serum Matrix, Chem. Commun., 2018, 54, 8383–8386.

    Article  CAS  Google Scholar 

  20. W. Li, D. Chen, H. Wang, S. Luo, L. Dong, Y. Zhang, J. Shi, B. Tong and Y. Dong, Quantitation of Albumin in Serum Using “Turn-on” Fluorescent Probe with Aggregation-Enhanced Emission Characteristics, ACS Appl. Mater. Interfaces, 2015, 7, 26094–26100.

    Article  CAS  Google Scholar 

  21. A. M. Pettiwala and P. K. Singh, Supramolecular Dye Aggregate Assembly Enables Ratiometric Detection and Discrimination of Lysine and Arginine in Aqueous Solution, ACS Omega, 2017, 2, 8779–-8787.

    Article  CAS  Google Scholar 

  22. J. Mohanty, H. Pal, A. K. Ray, S. Kumar and W. M. Nau, Supramolecular Dye Laser with Cucurbit[7]uril in Water, ChemPhysChem, 2007, 8, 54–56.

    Article  CAS  Google Scholar 

  23. N. Barooah, J. Mohanty, H. Pal and A. C. Bhasikuttan, Stimulus-Responsive Supramolecular pKa Tuning of Cucurbit[7]uril Encapsulated Coumarin 6 Dye, J. Phys. Chem. B, 2012, 116, 3683–3689.

    Article  CAS  Google Scholar 

  24. Y. Liu, B. H. Han and Y. T Chen, Molecular Recognition and Complexation Thermodynamics of Dye Guest Molecules by Modified Cyclodextrins and Calixarenesulfonates, J. Phys. Chem. B, 2002, 106, 4678–4687.

    Article  CAS  Google Scholar 

  25. R. Ludwig and N. T K. Dzung, Calixarene-Based Molecules for Cation Recognition, Sensors, 2002, 2, 397–416.

    Article  Google Scholar 

  26. N. Basilio, V. Francisco and L. Garcia-Rio, Aggregation of p-Sulfonatocalixarene-Based Amphiphiles and Supra-Amphiphiles, Int. J. Mol. Sci., 2013, 14, 3140–3157.

    Article  CAS  Google Scholar 

  27. J. Szejtli, Introduction and General Overview of Cyclodextrin Chemistry, Chem. Rev., 1998, 98(5), 1743–1754.

    Article  CAS  Google Scholar 

  28. E. M. M. Del Valle, Cyclodextrins and their uses: a review, Process Biochem., 2004, 39, 1033–1046.

    Article  Google Scholar 

  29. T. Loftsson and D. Duchene, Cyclodextrins and Their Pharmaceutical Applications, Int. J. Pharm., 2007, 329, 1–11.

    Article  CAS  Google Scholar 

  30. A. Rasheed, A. C. K. Kumar and V. V. N. S. S. Sravanthi, Cyclodextrins as Drug Carrier Molecule: A Review, Sci. Pharm., 2008, 76, 567–598.

    Article  CAS  Google Scholar 

  31. J. Zhang and P. X. Ma, Cyclodextrin-Based Supramolecular Systems For Drug Delivery: Recent Progress and Future Perspective, Adv. Drug Delivery Rev., 2013, 65, 1215–1233.

    Article  CAS  Google Scholar 

  32. W. Yang and M. M. de Villiers, Effect of 4-Sulphonato-Calix [n]Arenes and Cyclodextrins on the Solubilization of Niclosamide, a Poorly Water Soluble Anthelmintic, AAPS J., 2005, 7(1) (Article 23), E241–E248.

  33. J. C. Harrison and M. R. Eftink, Cyclodextrin–Adamantanecarboxylate Inclusion Complexes: A Model System For The Hydrophobic Effect, Biopolymers, 1982, 21, 1153–1166.

    Article  CAS  Google Scholar 

  34. Z. Yang and R. Breslow, Very Strong Binding of Lithocholic Acid to β-Cyclodextrin, Tetrahedron Lett., 1997, 38(35), 6171–6172.

  35. M. Roux, B. Perly and F. Djedaíni-Pilard, Self-assemblies of amphiphilic cyclodextrins, Eur. Biophys. J., 2007, 36(8), 861–867.

  36. S. Bakkialakshmi and T. Menaka, Study on the inclusion Interactions of β-Cyclodextrin with Rhodamine B Base, Int. J. ChemTech Res., 2012, 4(1), 223–231.

  37. M. N. Shinde, A. C. Bhasikuttan and J. Mohanty, The Contrasting Recognition Behavior of β-Cyclodextrin and Its Sulfobutylether Derivative towards 4′,6-Diamidino-2-pheny-lindole, ChemPhysChem, 2015, 16, 3425–3432.

    Article  CAS  Google Scholar 

  38. G. Chakraborty, A. K. Ray, P. K. Singh and H. Pal, A Styryl Based Fluorogenic Probe with High Affinity for A Cyclodextrin Derivative, Org. Biomol. Chem., 2019, 17(28), 6895–6904.

    Article  CAS  Google Scholar 

  39. N. H. Mudliar and P. K. Singh, Fluorescent H-Aggregates Hosted by a Charged Cyclodextrin Cavity, Chem. –Eur. J., 2016, 22, 7394–7398.

    Article  CAS  Google Scholar 

  40. P. K. Singh, A. K. Mora, S. Murudkar and S. Nath, Dynamics under confinement: torsional dynamics of Auramine O in a nanocavity, RSC Adv., 2014, 4, 34992–35002.

    Article  CAS  Google Scholar 

  41. P. K. Singh, S. Murudkar, A. K. Mora and S. Nath, Ultrafast Torsional Dynamics of Thioflavin-T in an Anionic Cyclodextrin Cavity, J. Photochem. Photobiol., A, 2015, 298, 40–48.

  42. P. Sarkar, R. Luchowski, S. Raut, N. Sabnis, A. Remaley, A. G. Lacko, S. Thamake, Z. Gryczynski and I. Gryczynski, Studies on solvatochromic properties of aminophenylstyryl-quinolinum dye, LDS 798, and its application in studying submicron lipid based structure, Biophys. Chem., 2010, 153, 61–69.

    Article  CAS  Google Scholar 

  43. H. Doan, M. Castillo, M. Bejjani, Z. Nurekeyev, S. V. Dzyuba, I. Gryczynski, Z. Gryczynski and S. Raut, Solvatochromic Dye LDS 798 as Microviscosity and pH Probe, Phys. Chem. Chem. Phys., 2017, 19, 29934–29939.

    Article  CAS  Google Scholar 

  44. M. Gupta, D. K. Maity, S. K. Nayak and A. K. Ray, Modulation of Photophysics and Photostability of Cationic Coumarin 1 Dye Upon Inclusion with Macrocyclic Host Cucurbit[7]Uril, J. Photochem. Photobiol., A, 2015, 300, 15–21.

    Article  CAS  Google Scholar 

  45. M. Sayed, M. Sundararajan, J. Mohanty, A. C. Bhasikuttan and H. Pal, Photophysical and Quantum Chemical Studies on the Interactions of Oxazine-1 Dye with Cucurbituril Macrocycles, J. Phys. Chem. B, 2015, 119, 3046–3057.

    Article  CAS  Google Scholar 

  46. S. S. Thakare, G. Chakraborty, P. Krishnakumar, A. K. Ray, D. K. Maity, H. Pal and N. Sekar, Supramolecularly Assisted Modulation of Optical Properties of BODIPY-Benzimidazole Conjugates, J. Phys. Chem. B, 2016, 120, 11266–11278.

    Article  CAS  Google Scholar 

  47. G. Chakraborty, A. K. Ray and H. Pal, Interaction of a Triaryl Methane Dye with Cucurbit[7]uril and Bovine Serum Albumin: A Perspective of Cooperative versus Competitive Bindings, ChemistrySelect, 2018, 3, 1088–1096.

    Article  CAS  Google Scholar 

  48. P. Thordarson, Determining Association Constants from Titration Experiments in Supramolecular Chemistry, Chem. Soc. Rev., 2011, 40, 1305–1323.

    Article  CAS  Google Scholar 

  49. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Plenumm Press, Springer, New York, 3rd edn, 2006.

  50. R. Sola-Llano, V. Martínez-Martínez, Y. Fujita, L. Gómez-Hortigüela;, A. Alfayate, H. Uji-i, E. Fron, J. Pérez-Pariente and I. López-Arbeloa, Formation of a Nonlinear Optical Host–Guest Hybrid Material by Tight Confinement of LDS 722 into Aluminophosphate 1D Nanochannels, Chem. –Eur. J., 2016, 22, 15700–15711.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabhat K. Singh.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/d0pp00103a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, G., Ray, A.K., Singh, P.K. et al. Does the degree of substitution on the cyclodextrin hosts impact their affinity towards guest binding?. Photochem Photobiol Sci 19, 956–965 (2020). https://doi.org/10.1039/d0pp00103a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/d0pp00103a

Navigation