Skip to main content
Log in

Interplay among the “flipping” glutamine, a conserved phenylalanine, water and hydrogen bonds within a blue-light sensing LOV domain

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

In this work we exploited time-resolved photoacoustics (PA) and molecular dynamics (MD) simulations to investigate the function of a conserved phenylalanine residue in blue sensing (BL) LOV domains. The LOV photocycle involves reversible formation of a photoproduct (LOV390) where the flavin mononucleotide (FMN) chromophore is covalently bound to a cysteine. LOV390 thermally returns to the dark adapted state (LOV447) with a lifetime τrec (s-to-h). In the LOV domain of Bacillus subtilis BsYtvA, the conserved F46 is one of the few residues undergoing a pronounced light-driven conformational change. PA and spectro-scopic data show that in the YtvA variants F46A and F46Y light-induced structural changes are much smaller than those in the wild type (wt) protein, τrec is strongly accelerated and the energy content of LOV390 is lower for F46Y. MD simulations for each variant in the LOV447 and LOV390 states revealed an overall very stable structure of the BsYtvA-LOV domain. The largest variations emerged for the conserved HB network that includes FMN, Q123 (the “flipping” glutamine of LOV domains), and the conserved N104 and N94, with strong dependence on the presence of water. The lateral chain of Q123 in wt-LOV447 can adopt three alternative conformations, and movements act in concert with F46 flexibility. In LOV390, Q123 remains instead fixed in the orientation adopted in the crystal structure. Interestingly, in F46A, Q123 is locked in a LOV447-like conformation (pseudo-dark-adapted state), in both LOV447 and LOV390. In LOV447 of F46Y the tyrosine hydroxyl group fixes a water molecule, which induces a Q123 conformation similar to wt-LOV390, i.e. a pseudo-photoproduct state. These pseudo-dark-adapted and photoproduct-like conformations of the Q123 sidechain may account for the strong acceleration of the photocycle in the two variants. Given the importance of the “flipping” glutamine in light-to-signal propagation in LOV proteins, the results presented here underscore a crucial structural and functional role of the conserved F46. MD results also indicate that F46 is not directly engaged in permeability of the FMN pocket, but is involved in solvent ordering and the formation of water bridges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Losi and W. Gärtner, Solving Blue Light Riddles: New Lessons from Flavin-binding LOV Photoreceptors, Photochem. Photobiol., 2017, 93, 141–158.

    Article  CAS  Google Scholar 

  2. T. Fettweiss, K. Röllen, J. Granzin, O. Reiners, S. Endres, T. Drepper, D. Willbold, K.-E. Jaeger, R. Batra-Safferling and U. Krauss, Mechanistic Basis of the Fast Dark Recovery of the Short LOV Protein DsLOV from Dinoroseobacter shibae, Biochemistry, 2018, 57, 4833–4847.

    Article  CAS  Google Scholar 

  3. S. T. Glantz, E. J. Carpenter, M. Melkonian, K. H. Gardner, E. S. Boyden, G. K.-S. Wong and B. Y. Chow, Functional and topological diversity of LOV domain photoreceptors, Proc. Natl. Acad. Sci. U. S. A., 2016, 113, E1442–E1451.

    Article  CAS  Google Scholar 

  4. J. T. Henry and S. Crosson, Ligand-Binding PAS Domains in a Genomic, Cellular, and Structural Context, Annu. Rev. Microbiol., 2011, 65, 261–286.

    Article  CAS  Google Scholar 

  5. S. M. Harper, L. C. Neil and K. H. Gardner, Structural Basis of a Phototropin Light Switch, Science, 2003, 301, 1541–1544.

    Article  CAS  Google Scholar 

  6. A. Losi, E. Polverini, B. Quest and W. Gärtner, First Evidence for Phototropin-Related Blue-Light Receptors in Prokaryotes, Biophys. J., 2002, 82, 2627–2634.

    Article  CAS  Google Scholar 

  7. A. Möglich and K. Moffat, Structural Basis for Light-dependent Signaling in the Dimeric LOV Domain of the Photosensor YtvA, J. Mol. Biol., 2007, 373, 112–126.

    Article  Google Scholar 

  8. A. I. Nash, W.-H. Ko, S. M. Harper and K. H. Gardner, A Conserved Glutamine Plays a Central Role in LOV Domain Signal Transmission and Its Duration, Biochemistry, 2008, 47, 13842–13849.

    Article  CAS  Google Scholar 

  9. M. Avila-Pérez, J. Vreede, Y. Tang, O. Bende, A. Losi, W. Gärtner and K. Hellingwerf, In vivo mutational analysis of YtvA from Bacillus subtilis. Mechanism of light activation of the general stress response, J. Biol. Chem., 2009, 284, 24958–24964.

    Article  Google Scholar 

  10. A. Ganguly, W. Thiel and B. R. Crane, Glutamine Amide Flip Elicits Long Distance Allosteric Responses in the LOV Protein Vivid, J. Am. Chem. Soc., 2017, 139, 2972–2980.

    Article  CAS  Google Scholar 

  11. A. Losi, K. H. Gardner and A. Möglich, Blue-Light Receptors for Optogenetics, Chem. Rev., 2018, 118, 10659–10709.

    Article  CAS  Google Scholar 

  12. S. Crosson and K. Moffat, Photoexcited Structure of a Plant Photoreceptor Domain Reveals a Light-Driven Molecular Switch, Plant Cell, 2002, 14, 1067–1075.

    Article  CAS  Google Scholar 

  13. P. L. Freddolino, K. H. Gardner and K. Schulten, Signaling mechanisms of LOV domains: New insights from molecular dynamics studies, Photochem. Photobiol. Sci., 2013, 12, 1158–1170.

    Article  CAS  Google Scholar 

  14. M. E. Kalvaitis, L. A. Johnson, R. J. Mart, P. Rizkallah and R. K. Allemann, A Noncanonical Chromophore Reveals Structural Rearrangements of the Light-Oxygen-Voltage Domain upon Photoactivation, Biochemistry, 2019, 58, 2608–2616.

    Article  CAS  Google Scholar 

  15. V. V. Nazarenko, A. Remeeva, A. Yudenko, K. Kovalev, A. Dubenko, I. M. Goncharov, P. Kuzmichev, A. V. Rogachev, P. Buslaev, V. Borshchevskiy, A. Mishin, G. V. Dhoke, U. Schwaneberg, M. D. Davari, K.-E. Jaeger, U. Krauss, V. Gordeliy and I. Gushchin, A thermostable flavin-based fluorescent protein from Chloroflexus aggregans : a framework for ultra-high resolution structural studies, Photochem. Photobiol. Sci., 2019, 18, 1793–1805.

    Article  CAS  Google Scholar 

  16. J. Lokhandwala, R. I. Silverman, Y. de la Vega, H. C. Hopkins, C. W. Britton, A. Rodriguez-Iglesias, R. Bogomolni, M. Schmoll and B. D. Zoltowski, A Native Threonine Coordinates Ordered Water to Tune Light-Oxygen-Voltage (LOV) Domain Photocycle Kinetics and Osmotic Stress Signaling in Trichoderma reesei ENVOY, J. Biol. Chem., 2016, 291, 14839–14850.

    Article  CAS  Google Scholar 

  17. A. Pudasaini, K. K. El-Arab and B. D. Zoltowski, LOV-based optogenetic devices: light-driven modules to impart photo-regulated control of cellular signaling, Front. Mol. Biosci., 2015, 2, 18.

    Article  Google Scholar 

  18. A. Möglich and K. Moffat, Engineered photoreceptors as novel optogenetic tools, Photochem. Photobiol. Sci., 2010, 9, 1286–1300.

    Article  Google Scholar 

  19. A. Losi and S. E. Braslavsky, The time-resolved thermodynamics of the chromophore-protein interactions in biological photosensors as derived from photothermal measurements, Phys. Chem. Chem. Phys., 2003, 5, 2739–2750.

    Article  CAS  Google Scholar 

  20. A. Losi, T. Kottke and P. Hegemann, Recording of Blue Light-Induced Energy and Volume Changes within the Wild-Type and Mutated Phot-LOV1 Domain from Chlamydomonas reinhardtii, Biophys. J., 2004, 86, 1051–1060.

    Article  CAS  Google Scholar 

  21. I. Kraiselburd, A. Gutt, A. Losi, W. Gärtner and E. G. Orellano, Functional Characterization of a LOV-Histidine Kinase Photoreceptor from Xanthomonas citri subsp. citri, Photochem. Photobiol., 2015, 91, 1123–1132.

    Article  CAS  Google Scholar 

  22. R. Kaur Grewal, D. Mitra and S. Roy, Mapping networks of light–dark transition in LOV photoreceptors, Bioinformatics, 2015, 5, btv429.

  23. R. P. Diensthuber, C. Engelhard, N. Lemke, T. Gleichmann, R. Ohlendorf, R. Bittl and A. Möglich, Biophysical, Mutational, and Functional Investigation of the Chromophore-Binding Pocket of Light-Oxygen-Voltage Photoreceptors, ACS Synth. Biol., 2014, 3, 811–819.

    Article  CAS  Google Scholar 

  24. S.-H. Song, P. L. Freddolino, A. I. Nash, E. C. Carroll, K. Schulten, K. H. Gardner and D. S. Larsen, Modulating LOV Domain Photodynamics with a Residue Alteration outside the Chromophore Binding Site, Biochemistry, 2011, 50, 2411–2423.

    Article  CAS  Google Scholar 

  25. K. Magerl, I. Stambolic, B. Dick, V. Balland, E. D. Getzoff, T. Ritz, K. Brettel, S. Nonell, P. J. Tonge, S. R. Meech, I. P. Clark, M. Towrie, G. M. Greetham, A. Ng, J. J. Truglio, J. B. French, S. R. Meech and P. J. Tonge, Switching from adduct formation to electron transfer in a light–oxygen–voltage domain containing the reactive cysteine, Phys. Chem. Chem. Phys., 2017, 19, 10808–10819.

    Article  CAS  Google Scholar 

  26. S. Raffelberg, M. Mansurova, W. Gärtner and A. Losi, Modulation of the photocycle of a LOV domain photo-receptor by the hydrogen-bonding network, J. Am. Chem. Soc., 2011, 133, 5346–5356.

    Article  CAS  Google Scholar 

  27. P. A. van den Berg, J. Widengren, M. A. Hink, R. Rigler and A. J. Visser, Fluorescence correlation spectroscopy of flavins and flavoenzymes: photochemical and photophysical aspects., Spectrochim. Acta, Part A, 2001, 57, 2135–2144.

    Article  Google Scholar 

  28. S. Raffelberg, A. Gutt, W. Gärtner, C. Mandalari, S. Abbruzzetti, C. Viappiani and A. Losi, The amino acids surrounding the flavin 7a-methyl group determine the UVA spectral features of a LOV protein., Biol. Chem., 2013, 394, 1517–1528.

    Article  CAS  Google Scholar 

  29. J. E. Rudzki, J. L. Goodman and K. S. Peters, Simultaneous determination of photoreaction dynamics and energetics using pulsed, time-resolved photoacoustic calorimetry, J. Am. Chem. Soc., 1985, 107, 7849–7854.

    Article  CAS  Google Scholar 

  30. M. Gauden, S. Crosson, I. H. M. van Stokkum, R. van Gondelle, K. Moffat and J. T. M. Kennis, in Femtosecond Laser Applications in Biology, ed. S. Avrilleir and J. M. Tualle, SPIE Bellingham, WA5463, 2004, pp. 97–104.

  31. M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess and E. Lindah, Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX, 2015, 1–2, 19–25.

    Article  Google Scholar 

  32. A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiórkiewicz-Kuczera, D. Yin and M. Karplus, All-atom empirical potential for molecular modeling and dynamics studies of proteins., J. Phys. Chem. B, 1998, 102, 3586–3616.

    Article  CAS  Google Scholar 

  33. P. Mark and L. Nilsson, Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K, J. Phys. Chem. A, 2001, 105, 9954–9960.

    Article  CAS  Google Scholar 

  34. J. V. Vermaas, D. J. Hardy, J. E. Stone, E. Tajkhorshid and A. Kohlmeyer, TopoGromacs: Automated Topology Conversion from CHARMM to GROMACS within VMD, J. Chem. Inf. Model., 2016, 56, 1112–1116.

    Article  CAS  Google Scholar 

  35. H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov and P. E. Bourne, The Protein Data Bank, Nucleic Acids Res., 2000, 28, 235–242.

    Article  CAS  Google Scholar 

  36. N. Guex and M. C. Peitsch, SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling, Electrophoresis, 1997, 18, 2714–2723.

    Article  CAS  Google Scholar 

  37. L. L. C. Schrödinger, The PyMOL Molecular Graphics System, Version 1.8, 2015, https://pymol.org.

  38. W. Humphrey, A. Dalke and K. Schulten, VMD: Visual molecular dynamics, J. Mol. Graphics, 1996, 14, 33–38.

    Article  CAS  Google Scholar 

  39. T. A. Schüttrigkeit, C. K. Kompa, M. Salomon, W. Rüdiger and M. E. Michel-Beyerle, Primary photophysics of the FMN binding LOV2 domain of the plant blue light receptor phototropin of Avena sativa, Chem. Phys., 2003, 294, 501–508.

    Article  Google Scholar 

  40. A. Penzkofer, L. Endres, T. Schiereis and P. Hegemann, Yield of photo-adduct formation of LOV domains from Chlamydomonas reinhardtii by picosecond laser excitation, Chem. Phys., 2005, 316, 185–194.

    Article  CAS  Google Scholar 

  41. T. Kottke, J. Heberle, D. Hehn, B. Dick and P. Hegemannt, Phot-LOV1: Photocycle of a blue-light receptor domain from the green alga Chlamydomonas reinhardtii, Biophys. J., 2003, 84, 1192–1201.

    Article  CAS  Google Scholar 

  42. A. Pudasaini, J. S. Shim, Y. H. Song, H. Shi, T. Kiba, D. E. Somers, T. Imaizumi and B. D. Zoltowski, Kinetics of the LOV domain of ZEITLUPE determine its circadian function in Arabidopsis, eLife, 2017, 6, e21646.

  43. A. Losi, C. Mandalari and W. Gärtner, From Plant Infectivity to Growth Patterns: The Role of Blue-Light Sensing in the Prokaryotic World, Plants, 2014, 3, 70–94.

    Article  Google Scholar 

  44. R. Ohlendorf, R. R. Vidavski, A. Eldar, K. Moffat and A. Möglich, From dusk till dawn: One-plasmid systems for light-regulated gene expression, J. Mol. Biol., 2012, 416, 534–542.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aba Losi.

Additional information

Electronic supplementary information (ESI) available: Fig. S1–S10 and Tables S1–S3. See DOI: 10.1039/d0pp00082e

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polverini, E., Schackert, F.K. & Losi, A. Interplay among the “flipping” glutamine, a conserved phenylalanine, water and hydrogen bonds within a blue-light sensing LOV domain. Photochem Photobiol Sci 19, 892–904 (2020). https://doi.org/10.1039/d0pp00082e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/d0pp00082e

Navigation