Skip to main content

Advertisement

Log in

Complementary behavior of doping and loading in Ag/C-ZnTa206 for efficient visible-light photocatalytic redox towards broad wastewater remediation

  • PAPER
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

This work reports on the simple fabrication of a silver loaded and carbon doped zinc tantalate (Ag/ C-ZnTa206) photocatalyst with visible light photocatalytic activity toward broad wastewater remediation, ncluding high photo-reduction of Cr(vi) (98.4% in 210 min), excellent photo-oxidation of tetracycline hydrochloride (94.7% in 210 min), and superior photo-degradation of multiple dyes (>99.0% within 210 min). The optimal photocatalytic performance of Ag/C-ZnTa206 is mainly due to the excellent visible light absorption capacity and superior electron-hole separation efficiency, which is ascribed to the complementary behavior between carbon doping and silver loading. Particularly, the generation of defects due to C-doping is greatly inhibited by Ag-loading, and the SPR effect of Ag nanoparticles is enhanced due to the obstruction of Ag+ by C doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. A. Di Paola, E. Garcia-Lopez, G. Marci and L. Palmisano, A survey of photocatalytic materials for environmental remediation, J. Hazard. Mater., 2012, 211, 3–29.

    PubMed  Google Scholar 

  2. H. Yi, D. L. Huang, L. Qin, G. M. Zeng, C. Lai, M. Cheng, S. J. Ye, B. Song, X. Y. Ren and X. Y Guo, Selective prepared carbon nanomaterials for advanced photocatalytic application in environmental pollutant treatment and hydrogen production, Appl. Catal., B, 2018, 239, 408–424.

    CAS  Google Scholar 

  3. M. Bartolomeu, M. G. P. M. S. Neves, M. A. F. Faustino and A. Almeida, Wastewater chemical contaminants: remediation by advanced oxidation processes, Photochem. Photobiol. Sci., 2018, 17, 1573–1598.

    CAS  PubMed  Google Scholar 

  4. Y Pan, X. Z. Yuan, L. B. Jiang, H. B. Yu, J. Zhang, H. Wang, R. P. Guan and G. M. Zeng, Recent advances in synthesis, modification and photocatalytic applications of micro/ nano-structured zinc indium sulphide, Chem. Eng.J., 2018, 354, 407–431.

    CAS  Google Scholar 

  5. I. Shown, S. Samireddi, Y. C. Chang, R. Putikam, P. H. Chang, et al., Carbon-doped SnS2 nanostructure as a high-efficiency solar fuel catalyst under visible light, Nat. comm., 2018,9, 169.

  6. J. Y. Feng, H. T. Huang, T. Fang, X. Wang, S. C. Yan, et al., Defect Engineering in Semiconductors: Manipulating Nonstoichiometric Defects and Understanding Their Impact in Oxynitrides for Solar Energy Conversion, Adv. Funct. Mater., 2019, 29, 1808389.

  7. B. Weng, M. Y. Qi, C. Han, Z. R. Tang and Y. J. Xu, Photocorrosion Inhibition of Semiconductor-Based Photocatalysts: Basic Principle, Current Development, and Future Perspective, ACS Catal., 2019, 9, 4642–4687.

    CAS  Google Scholar 

  8. M. Xiao, B. Luo, M. Q. Lyu, S. C. Wang and L. Z. Wang, Single-Crystalline Nanomesh Tantalum Nitride Photocatalyst with Improved Hydrogen-Evolving Performance, Adv. Energy Mater., 2018, 8, 1701605.

    Google Scholar 

  9. K. Shirai, G. Fazio, T. Sugimoto, D. Selli, L. Ferraro, K. Watanabe, et al., Water-Assisted Hole Trapping at the Highly Curved Surface of Nano-TiO2 Photocatalyst, J. Am. Chem. Soc., 2018, 140, 1415–1422.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. L. Lin, W. B. Jiang, M. Nasr, M. Bechelany, P. Miele, H. Y. Wang and P. Xu, Enhanced visible light photocataly-sis by TiO2-BN enabled electrospinning of nanofibers for pharmaceutical degradation and wastewater treatment, Photochem. Photobiol. Sci., 2019, 18, 2921–2930.

    CAS  PubMed  Google Scholar 

  11. C. H. Chen, Z. C. Li, H. N. Lin, G. J. Wang, J. C. Liao, M. Y. Li, S. S. Lv and W. Li, Enhanced visible light photo-catalytic performance of ZnO nanowires integrated with CdS and Ag2S, Dalton Trans., 2016, 45, 3750–3758.

    CAS  PubMed  Google Scholar 

  12. L. Wang, D. D. Lv, Z. J. Yue, H. Zhu, L. Wang, D. F. Wang, X. Xu, W. C. Hao, S. X. Dou and Y Du, Promoting photore-duction properties via synergetic utilization between plasmome effect and highly active facet of BiOCl, Nano Energy, 2019, 57, 398–404.

    CAS  Google Scholar 

  13. L. J. An, M. Kitta, A. Iwase, A. Kudo, N. Ichikuni and H. Onishi, Photoexcited Electrons Driven by Doping Concentration Gradient: Flux-Prepared NaTaO3 Photocatalysts Doped with Strontium Cations, ACS Catal., 2018, 8, 9334–9341.

    CAS  Google Scholar 

  14. A. A. Dubale, I. N. Ahmed, X. H. Chen, C. Ding, G. H. Hou, R. F. Guan, X. M. Meng, X. L. Yang and M. H. Xie, A highly stable metal-organic framework derived phosphorus doped carbon/Cu2O structure for efficient photocatalytic phenol degradation and hydrogen production, J. Mater. Chem. A, 2019, 7, 6062–6079.

    CAS  Google Scholar 

  15. Y X. Liu, B. S. Zhang, L. F. Luo, X. Y Chen, Z. L. Wang, E. L. Wu, D. S. Su and W. X. Huang, TiO2/Cu2O Core/ Ultrathin Shell Nanorods as Efficient and Stable Photocatalysts for Water Reduction, Angew. Chem., Int. Ed., 2015, 54, 15260–15265.

    CAS  Google Scholar 

  16. Y Li, X. Y Xiao and Z. H. Ye, Fabrication of BiVO4/RGO/ Ag3PO4 ternary composite photocatalysts with enhanced photocatalytic performance, Appl. Surf. Sci., 2019, 467, 902– 911.

  17. S. J. Yao, S. S. Zhou, J. Wang, W. Z. Li and Z. H. Li, Optimizing the synthesis of SnO2/TiO2/RGO nano-composites with excellent visible light photocatalytic and antibacterial activities, Photochem. Photobiol. Sci., 2019, 18, 2989–2999.

    CAS  PubMed  Google Scholar 

  18. X. Bai, Y. Y. Du, X. Y Hu, Y D. He, C. L. He, E. Z. Liu and J. Fan, Synergy removal of Cr(vi) and organic pollutants over RP-MoS2/rGO photocatalyst, Appl. Catal., B, 2018, 239, 204–213.

    CAS  Google Scholar 

  19. S. Patnaik, K. K. Das, A. Mohanty and K. Parida, Enhanced photo catalytic reduction of Cr(vi) over polymer-sensitized g-C3N4/ZnFe2O4 and its synergism with phenol oxidation under visible light irradiation, Catal. Today, 2018, 315, 52–66.

    CAS  Google Scholar 

  20. J. K. McCusker, Electronic structure in the transition metal block and its implications for light harvesting, Science, 2019, 363, 484–488.

    CAS  PubMed  Google Scholar 

  21. D. D. Chen, J. Z. Fang, S. Y Lu, G. Y Zhou, W. H. Feng, F. Yang, Y Chen and Z. Q. Fang, Fabrication of Bi modified Bi2S3 pillared g-C3N4 photocatalyst and its efficient photocatalytic reduction and oxidation performances, Appl. Surf. Sci., 2017, 426,427–436.

  22. S. X. Li, J. B. Cai, X. Q. Wu, B. W. Liu, Q. Y Chen, Y H. Li and F. Y Zheng, TiO2@Pt@CeO2 nanocomposite as a bifunctional catalyst for enhancing photo-reduction of Cr(vi) and photo-oxidation of benzyl alcohol, J. Hazard. Mater., 2018, 346, 52–61.

    CAS  PubMed  Google Scholar 

  23. L. J. An, M. Kitta, A. Iwase, A. Kudo, N. Ichikuni and H. Onishi, Photoexcited Electrons Driven by Doping Concentration Gradient: Flux-Prepared NaTaO3 Photocatalysts Doped with Strontium Cations, ACS Catal., 2019, 8, 9334–9341.

    Google Scholar 

  24. S. B. Yang, D. B. Xu, B. Y Chen, B. F. Luo, X. Yan, L. S. Xiao and W. D. Shi, Synthesis and visible-light-driven photocatalytic activity of p-n heterojunction Ag2O/NaTaO3 nano-cubes, Appl. Surf. Sci., 2016, 383, 214–221.

    CAS  Google Scholar 

  25. A. Krukowska, G. Trykowski, W. Lisowski, T. Klimczuk, M. J. Winiarski and A. Zaleska-Medynska, Monometallic nanoparticles decorated and rare earth ions doped KTaO3/ K2Ta2O6 photocatalysts with enhanced pollutant decomposition and improved H2 generation, J. Catal., 2018, 364, 371–381.

    CAS  Google Scholar 

  26. S. P. Adhikari, Z. D. Hood, H. Wang, R. Peng, A. Krall, H. Li, V. W. Chen, et al., Enhanced visible light photocatalytic water reduction from a g-C3N4/SrTa2O6 heterojunction, Appl. Catal., B, 2017, 217, 448–458.

    CAS  Google Scholar 

  27. X. X. Xu, G. Liu and A. K. Azad, Visible light photocatalysis by in situ growth of plasmonic Ag nanoparticles upon AgTaO3, Int. J. Hydrogen Energy, 2015, 40, 3672–3678.

    CAS  Google Scholar 

  28. J. Y Lang, C. Y Li, S. W. Wang, J. J. Lv, Y G. Su, X. J. Wang and G. S. Li, Coupled Heterojunction Sn2Ta2O7@SnO2: Cooperative Promotion of Effective Electron-Hole Separation and Superior Visible-light Absorption, ACS Appl. Mater. Interfaces, 2015, 7, 13905–13914.

    CAS  PubMed  Google Scholar 

  29. S. Iguchi, K. Teramura, S. Hosokawa and T. Tanaka, A ZnTa2O6 photocatalyst synthesized via solid state reaction for conversion of CO2 into CO in water, Catal. Sci. Technol., 2016, 6, 4978–4985.

    CAS  Google Scholar 

  30. S. F. Sun, M. X. Sun, Y L. Fang, Y Wang and H. P. Wang, One-step in situ calcination synthesis of g-C3N4/N-TiO2 hybrids with enhanced photoactivity, RSC Adv., 2016, 6, 13063–13071.

    CAS  Google Scholar 

  31. N. Boonprakob, N. Wetchakun, S. Phanichphant, D. Waxier, P. Sherrell, A. Nattestad, J. Chen and B. Inceesungvorn, Enhanced visible-light photocatalytic activity of g-C3N4/TiO2 films, J. Colloid Interface Sci., 2014, 417, 402–409.

    CAS  PubMed  Google Scholar 

  32. H. Onishi, Sodium Tantalate Photocatalysts Doped with Metal Cations: Why Are They Active for Water Splitting?, ChemSusChem, 2019, 12, 1825–1834.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. S. S. Zhou and S. Q. Liu, Photocatalytic reduction of CO2 based on a CeO2 photocatalyst loaded with imidazole fabricated N-doped graphene and Cu (II) as cocatalysts, Photochem. Photobiol. Sci., 2017, 16, 1563–1569.

    CAS  PubMed  Google Scholar 

  34. R. Mo, J. Li, Y. H. Tang, H. X. Li and J. X. Zhong, Introduction of nitrogen defects into a graphitic carbon nitride framework by selenium vapor treatment for enhanced photocatalytic hydrogen production, Appl. Surf. Sci., 2019, 476, 552–559.

    CAS  Google Scholar 

  35. A. M. Ferrari-Lima, R. P. de Souza, S. S. Mendes and R. G. Marques, Photodegradation of benzene, toluene and xylenes under visible light applying N-doped mixed TiO2 and ZnO catalysts, Catal. Today, 2015, 241, 40–46.

    CAS  Google Scholar 

  36. G. R. Jia, Y. Wang, X. Q. Cui and W. T. Zheng, Highly Carbon-Doped TiO2 Derived from MXene Boosting the Photocatalytic Hydrogen Evolution, ACS Sustainable Chem. Eng., 2018, 6, 13480–13486.

    CAS  Google Scholar 

  37. J. A. Sullivan, E. M. Neville, R. Herron, K. R. Thampi and J. M. D. MacElroy, Routes to visible light active C-doped TiO2 photocatalysts using carbon atoms from the Ti precursors, J. Photochem. Photobiol., A, 2014, 289, 60–65.

    CAS  Google Scholar 

  38. H. Zangeneh, A. A. Zinatizadeh, S. Zinadini, M. Feyzi, E. Rafiee and D. W. Bahnemann, A novel L-Histidine (C, N) codoped-TiO2–CdS nanocomposite for efficient visible photo-degradation of recalcitrant compounds from wastewater, J. Hazard. Mater., 2019, 369, 384–397.

    CAS  PubMed  Google Scholar 

  39. X. Xu, L. Lai, J. H. Jiang, Z. Q. He and S. Sonet, C, N-Codoped TiO2 with a Nitrogen-Doped Carbon Coating Derived from 2,6-Diaminopyridine for Visible Light-Induced Photocatalytic Hydrogen Evolution, J. Phys. Chem. C, 2019, 123, 9702–9712.

    CAS  Google Scholar 

  40. L. Zeng, F. Zhe, Y. Wang, Q. L. Zhang, X. Y Zhao, X. Hu, Y Wu and Y M. He, Preparation of interstitial carbon doped BiOI for enhanced performance in photocatalytic nitrogen fixation and methyl orange degradation, J Colloid Interface Sci., 2019, 539, 563–574.

  41. I. F. Teixeira, E. C. M. Barbosa, S. C. E. Tsang and P. H. C. Camargo, Carbon nitrides and metal nano-particles: from controlled synthesis to design principles for improved photocatalysis, Chem. Soc. Rev., 2018, 47, 7783–7817.

    CAS  PubMed  Google Scholar 

  42. C. H. An, S. T. Wang, Y G. Sun, Q. H. Zhang, J. Zhang, C. Y. Wang and J. Y. Fang, Plasmonic silver incorporated silver halides for efficient photocatalysis, J. Mater. Chem. A, 2016, 4, 4336–4352.

    CAS  Google Scholar 

  43. L. G. Devi and R. Kavitha, A review on plasmonic metal-TiO2 composite for generation, trapping, storing and dynamic vectorial transfer of photogenerated electrons across the Schottky junction in a photocatalytic system, Appl. Surf. Sci., 2016, 360, 601–622.

    Google Scholar 

  44. P. V. Pimpliskar, S. C. Motekar, G. G. Umarji, W. Lee and S. S. Arbuj, Synthesis of silver-loaded ZnO nanorods and their enhanced photocatalytic activity and photoconductivity study, Photochem. Photobiol. Sci., 2019, 18, 1503–1511.

    CAS  PubMed  Google Scholar 

  45. A. Iwase, H. Kato and A. Kudo, The effect of Au cocatalyst loaded on La-doped NaTaO3 on photocatalytic water splitting and O2 photoreduction, Appl. Catal., B, 2013, 136, 89– 93.

  46. C. Lee, K. Shin, Y. J. Lee, C. Jung and H. M. Lee, Effects of shell thickness on Ag-Cu2O core-shell nanoparticles with bumpy structures for enhancing photocatalytic activity and stability, Catal. Today, 2018, 303, 313–319.

    CAS  Google Scholar 

  47. H. Z. Wang, Y. Y. Gao, J. Liu, X. Y. Li, M. W. Ji and E. H. Zhang, Efficient Plasmonic Au/CdSe Nanodumbbell for Photoelectrochemical Hydrogen Generation beyond Visible Region, Adv. Energy Mater., 2019, 9, 1803889.

  48. U. Shaislamov and H. J. Lee, Facile synthesis of Ag/ZnO metal-semiconductor hierarchical photocatalyst nano-structures via the galvanic-potential-enhanced hydro-thermal method, CrystEngComm, 2018, 20, 7492–7501.

    CAS  Google Scholar 

  49. M. Sahoo, S. Mansingh and K. M. Parida, A bimetallic Au-Ag nanoalloy mounted LDH/RGO nanocomposite: a promising catalyst effective towards a coupled system for the photoredox reactions converting benzyl alcohol to benz-aldehyde and nitrobenzene to aniline under visible light, J. Mater. Chem. A, 2019, 7, 7614–7627.

    CAS  Google Scholar 

  50. V. Vaiano, M. Matarangolo, J. J. Murcia, H. Rojas, J. A. Navio and M. C. Hidalgo, Enhanced photocatalytic removal of phenol from aqueous solutions using ZnO modified with Ag, Appl. Catal., B, 2018, 225, 197–206.

    CAS  Google Scholar 

  51. X. Bi, N. Wu, C. X. Zhang, P. Bai, Z. L. Chai and X. J. Wang, Synergetic effect of heterojunction and doping of silver on ZnNb2O6 for superior visible-light photocatalytic activity and recyclability, Solid State Sci., 2018, 84, 86–94.

    CAS  Google Scholar 

  52. M. Yan, Y. Q. Hua, F. F. Zhu, L. Sun, W. Gu and W. D. Shi, Constructing nitrogen doped graphene quantum dots-ZnNb2O6/g-C3N4 catalysts for hydrogen production under visible light, Appl. Catal., B, 2017, 206, 531–537.

    CAS  Google Scholar 

  53. H. J. Liu, P. Chen, X. Y. Yuan, Y. X. Zhang, H. W. Huang, L. A. Wang and F. Dong, Pivotal roles of artificial oxygen vacancies in enhancing photocatalytic activity and selectivity on Bi2O2CO3 nanosheets, Chin. J. Catal., 2019, 40, 620–630.

    CAS  Google Scholar 

  54. Y. M. Zhu, L. Zhang, B. Zhao, H. J. Chen, X. Liu, R. Zhao, X. W. Wang, J. Liu, Y. Chen and M. L. Liu, Improving the Activity for Oxygen Evolution Reaction by Tailoring Oxygen Defects in Double Perovskite Oxides, Adv. Funct. Mater., 2019, 29, 1901783.

    Google Scholar 

  55. M. Khodaeipour, M. Haghighi, M. Shabani and N. Mohseni, Influence of fuel type and microwave combustion on in situ fabrication of BimOnBrz mixed-phase nano-structured photocatalyst: Effective sun-light photo-response ability in tetracycline degradation, J Hazard. Mater., 2020, 393, 122462.

  56. M. Jodeyri, M. Haghighi and M. Shabani, Plasmon-assisted demolition of antibiotic using sono-photoreduction decoration of Ag on 2D C3N4 nanophotocatalyst enhanced with acid-treated clinoptilolite, Ultrason. Sonochem., 2019, 54, 220–232.

    CAS  PubMed  Google Scholar 

  57. S. Heidari, M. Haghighi and M. Shabani, Sono-photodepo-sition of Ag over sono-fabricated mesoporous Bi2Sn2O7-two dimensional carbon nitride: Type-II plasmonic nano-het-erojunction with simulated sunlight-driven elimination of drug, Chem. Eng. J., 2020, 389, 123418.

    CAS  Google Scholar 

  58. M. Jodeyri, M. Haghighi and M. Shabani, Enhanced-photo-reduction deposition of Ag over sono-dispersed C3N4- Clinoptilolite used as nanophotocatalyst for efficient photo-catalytic degradation of tetracycline antibiotic under simulated solar-light, J. Mater. Set.: Mater. Electron., 2019, 30, 13877–13894.

    CAS  Google Scholar 

  59. Z. X. Ding, W. M. Wu, S. J. Liang, H. R. Zheng and L. Wu, Selective-syntheses, characterizations and photocatalytic activities of nanocrystalline ZnTa2O6 photocatalysts, Mater. Lett., 2011, 65, 1598–1600.

    CAS  Google Scholar 

  60. B. F. Luo, D. B. Xu, D. Li, G. L. Wu, M. M. Wu, W. D. Shi and M. Chen, Fabrication of a Ag/Bi3TaO7 Plasmonic Photocatalyst with Enhanced Photocatalytic Activity for Degradation of Tetracycline, ACS Appl. Mater. Interfaces, 2015, 7, 17061–17069.

    CAS  PubMed  Google Scholar 

  61. A. Fujishima, T. N. Rao and D. A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol., 2000, 1, 1–21.

    CAS  Google Scholar 

  62. Y. Su, B. Zhu, K. Guan, S. Gao, L. Lv, C. Du, L. Peng, L. Hou and X. Wang, Particle size and structural control of ZnWO4 nanocrystals via Sn2+doping for tunable optical and visible photocatalytic properties, J. Phys. Chem. C, 2012, 116, 18508–18517.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanli Chai.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/ d0pp00056f

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, N., Bai, P., Yang, T. et al. Complementary behavior of doping and loading in Ag/C-ZnTa206 for efficient visible-light photocatalytic redox towards broad wastewater remediation. Photochem Photobiol Sci 19, 1042–1053 (2020). https://doi.org/10.1039/d0pp00056f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/d0pp00056f

Navigation