Skip to main content
Log in

The solar photo-Fenton process at neutral pH applied to microcystin-LR degradation: Fe2+, H2O2 and reaction matrix effects

  • PAPER
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Microcystins are a group of cyanotoxins with known hepatotoxic effects, and their presence in drinking water represents a public health concern all over the world. The main objective of this work was to evaluate the solar photo-Fenton process at near-neutral pH in the degradation of microcystin-LR (MC-LR) under conditions close to those found in bloom episodes, with a high concentration of cell debris and natural organic matter (NOM). The influence of experimental parameters such as Fe2+ and H2O2 concentrations, reaction matrix, and the presence of scavenger ions, as well as ecotoxicity before and after treatment, was also evaluated. The reaction matrix was obtained from Microcystis aeruginosa cultivated in ASM-1 medium (ACE1 and ACE2 extracts). H2O2 and Fe2+ concentrations were optimized by 22 factorial design with the central point in a bench-scale solar reactor, using ACE1 extract, and the improved condition was applied in a compound parabolic collector (CPC) reactor, for the ACE2, natural water (RVW) and natural water with M. aeruginosa crude extract (RVCE). Matrix effect assays indicated that radical scavengers present in the medium were responsible for the decrease in the mineralization rates. The solar photo-Fenton process in the CPC reactor achieved COD (75%) and MC-LR (70%) reduction after 120 min at pH = 7.8, [H2O2]/COD = 3.18 and [H2O2]/[Fe2+] = 10 for the ACE2 sample. When the same conditions were applied to the RVCE sample, the process removed 77% of DOC and up to 99% of MC-LR after 45 min of the reaction. Sinapis alba bioassays showed that there was no increase in ecotoxicity after the solar photo-Fenton treatment. These results demonstrate the potential of the solar photo-Fenton process at neutral pH as an additional step in the treatment of natural matrices contaminated with microcystins. In addition, the work reinforces the importance of bioassays in treatment process monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. S. Bullerjahn, R. M. McKay, D. B. Baker, G. L. Boyer, L. V. D’Anglada, G. J. Doucette, J. C. Ho, E. G. Irwin, C. L. Kling, R. M. Kudela, R. Kurmayer, A. M. Michalak, J. D. Ortiz, T. G. Otten, H. W. Paerl, B. Qin, B. L. Sohngen, R. P. Stumpf, P. M. Visser and S. W. Wilhelm, Harmful Algae, 2016, 54, 223–238.

    PubMed  PubMed Central  Google Scholar 

  2. WHO (World Health Organization), WHO Guidelines for Drinking-water Quality: fourth edition incorporating the first addendum, 4th edn, World Health Organization, Geneva, 2017.

  3. N. Klamerth, L. Rizzo, S. Malato, M. I. Maldonado, A. Agüera and A. R. Fernández-Alba, Water Res., 2010, 44, 545–554.

    CAS  PubMed  Google Scholar 

  4. S. Miralles-Cuevas, I. Oiler, A. Agüera, J. A. Sánchez Pérez and S. Malato, Chem. Eng.J., 2017, 318, 161–170.

    CAS  Google Scholar 

  5. B. Esteban García, G. Rivas, S. Arzate and J. A. Sánchez Pérez, Catal. Today, 2018, 313, 72–78.

    Google Scholar 

  6. E. Cuervo Lumbaque, R. M. Cardoso, A. Dellagrve, L. O. dos Santos, M. Ibáñez, F. Hernández and C. Sirtori, J. Environ. Chem. Eng., 2018, 6, 3951–3961.

    Google Scholar 

  7. S. Malato, P. Fernández-Ibáñez, M. I. Maldonado, J. Blanco and W. Gernjak, Catal. Today, 2009, 147, 1–59.

    CAS  Google Scholar 

  8. A. M. Freitas, C. Sirtori, C. A. Lenz and P. G. Peralta-Zamora, Photochem. Photobiol. Sci., 2013, 12, 696–702.

    PubMed  Google Scholar 

  9. A. Karci, E. Wurtzler and A. de la Cruz, J. Hazard. Mater., 2018, 349, 282–292.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. I. Carra, J. L. Casas López, L. Santos-Juanes, S. Malato and J. A. Sánchez Pérez, Chem. Eng.J., 2013, 224, 67–74.

    CAS  Google Scholar 

  11. A. M. Freitas, G. Rivas, M. C. Campos-Mañas, J. L. Casas López, A. Agüera and J. A. Sánchez Pérez, Environ. Sci. Pollut. Res., 2017, 24, 1093–1104.

    CAS  Google Scholar 

  12. D. Spuhler, J. A. Rengifo-Herrera and C. Pulgarin, Appl. Catal., B, 2010, 96, 126–141.

    CAS  Google Scholar 

  13. Z. Wang, Y. Guo, Z. Liu, X. Feng, Y. Chen and T. Tao, Photochem. Photobiol. Sci., 2015, 14, 473–480.

    PubMed  Google Scholar 

  14. I. N. Dias, B. S. Souza, J. H. O. S. Pereira, F. C. Moreira, M. Dezotti, R. A. R. Boaventura and V. J. P. Vilar, Chem. Eng.J., 2014, 247, 302–313.

    CAS  Google Scholar 

  15. C. Rodrigues-Silva, M. Maniera, S. Rath and J. R. Guimaraes, Sci. Total Environ., 2013, 445, 337–346.

    PubMed  Google Scholar 

  16. H. Zúñiga-Betínez and G. A. Peñuela, J. Environ. Manage., 2018, 217, 929–938.

  17. W. Zong, F. Sun and X. Sun, Water Res., 2013, 47, 3211–3219.

    CAS  PubMed  Google Scholar 

  18. M. Smutná, P. Babica, S. Jarque, K. Hilscherová, B. Maršálek, M. Haeba and L. Bláha, Toxicon, 2014, 79, 11–18.

    PubMed  Google Scholar 

  19. S. Corbel, C. Mougin, F. Martin-Laurent, O. Crouzet, D. Bru, S. Nélieu and N. Boua’icha, Chemosphere, 2015, 128, 332–340.

    CAS  PubMed  Google Scholar 

  20. V. Gaget, Y Chiu, M. Lau and A. R. Humpage, J. Appl. Phycol, 2017, 29, 309–321.

    Google Scholar 

  21. IAP. Environmental Agency of Paraná, Water quality of reservoirs in the state of Paraná, Curitiba, Paraná, Brazil (In Portuguese).

  22. M. Kositzi, A. Antoniadis, I. Poulios, I. Kiridis and S. Malato, Sol. Energy, 2004, 77, 591–600.

    CAS  Google Scholar 

  23. A. Zapata, I. Oiler, L. Rizzo, S. Hilgert, M. I. Maldonado, J. A. Sánchez Pérez and S. Malato, Appl. Catal., B, 2010, 97, 292–298.

    CAS  Google Scholar 

  24. B. Milman and I. K. Zhurkovich, Anal. Chem. Res., 2014, 1, 8–15.

  25. E. W. Rice, R. B. Baird, A. D. Eaton and L. S. Clesceri, Standard Methods for the Examination of Water and Wastewater, American Public Health Association (APHA), American Water Works Association (AWWA) and the Water Environment Federation, Washington D.C., 2012.

  26. R. Schick, I. Strasser and S. Hans-Henning, Water Res., 1997, 31, 1371–1378.

    CAS  Google Scholar 

  27. M. C. Sobrero and A. Ronco, in Ensayos toxicológicos para la evaluación de substancias químicas em água y suelo - La experiencia en México, ed. P. R. Romero and A. M. Cantú, Secretaria de Medio Ambiente y Recursos Naturales, Instituto Nacional de Ecología, Talpan, 2008.

  28. B. J. Young, N. I. Riera, M. E. Beily, P. A. Bres, D. C. Crespo and A. E. Ronco, Ecotoxicol. Environ. Saf, 2012, 76, 182–186.

    CAS  PubMed  Google Scholar 

  29. S. Papoutsakis, S. Miralles-Cuevas, I. Oiler, J. L. Garcia-Sanchez, C. Pulgarin and S. Malato, Catal. Today, 2015, 252, 61–69.

    CAS  Google Scholar 

  30. J. Park, H. Nam, J. Choi, J. Ha and S. Lee, Chem. Eng. ]., 2017, 313, 345–354.

    CAS  Google Scholar 

  31. D. Trigueros, A. Módenes, P. Souza, A. de Pauli, A. R. Souza, F. R. Espinoza-Quiñones and F. Borba, J. Photochem. Photobiol., A, 2019, 385, 112095.

  32. E. Neyens and J. Baeyens, J. Hazard. Mater., 2003, 98, 33–50.

  33. J. J. Pignatello, E. Oliveros and A. Mackay, Crit. Rev. Environ. Sci. Technol., 2006, 36, 1–84.

    CAS  Google Scholar 

  34. A. MacHuIek, J. E. F. Moraes, L. T. Okano, C. A. Silvério and F. H. Quina, Photochem. Photobiol. Sci., 2009, 8, 985–991.

    Google Scholar 

  35. L. I. Doumic, P. A. Soares, M. A. Ayude, M. Cassanello, R. A. R. Boaventura and V. J. P. Vilar, Chem. Eng. J., 2015, 277, 86–96.

    CAS  Google Scholar 

  36. T. Csay, R. Homlok, E. Illes, E. Takács and L. Wojnárovits, Isr.J. Chem., 2014, 54(3), 233–241.

  37. F. Vogel, J. Harf, A. Hug and P. R. Rohr, Water Res., 2000, 34, 2689–2702.

    CAS  Google Scholar 

  38. Y. Adewuyi and Y M. Khan, Chem. Eng. J., 2016, 304, 793–807.

  39. Y Li, J. Sun and S. Sun, J. Hazard. Mater., 2016, 313, 193–200.

    CAS  PubMed  Google Scholar 

  40. A. R. Lado Ribeiro, N. F. F. Moreira, G. Li Puma and A. M. T. Silva, Chem. Eng. J., 2019, 363, 155–173.

    Google Scholar 

  41. Y Fang, D. Chen, Y Huang, J. Yang and G. Chen, Chin. J. Anal. Chem., 2011, 39(4), 540–543.

  42. C. Postigo, C. Sirtori, I. Oiler, S. Malato, M. I. Maldonado, M. L. de Alda and D. Barceló, Appl. Catal., B, 2011, 104, 37–48.

    CAS  Google Scholar 

  43. S. Yan, D. Zhang and W. Song, Environ. Pollut, 2014, 193, 111–118.

    CAS  PubMed  Google Scholar 

  44. K. Tsuji, S. Naito, F. Kondo, N. Ishikawa, M. F. Watanabe, M. Suzuki and K. Harada, Environ. Sci. Technol., 1994, 28, 173–177.

    CAS  PubMed  Google Scholar 

  45. S. Esplugas, J. Ginénez, S. Contreras, E. Pascual and M. Rodriguez, Water Res., 2002, 36, 1034–1042.

    CAS  PubMed  Google Scholar 

  46. S. G. Michael, I. Michael-Kordatou, S. Nahim-Granados, M. I. Polo-López, J. Rocha, A. B. Martínez-Piernas, P. Fernández-Ibáñez, A. Agüera, C. M. Manaia and D. Fatta-Kassinos, Chem. Eng. J., 2020, 388, 124383.

    CAS  Google Scholar 

  47. J. Park, B. Yang, J. Kim, J. Choi, H. Park and S. Lee, Chem. Eng. J., 2018, 348, 125–134.

    CAS  Google Scholar 

  48. E. R. Bandala, D. Martínez, E. Martinez and D. D. Dionysiou, Toxicon, 2004, 43, 829–832.

    CAS  PubMed  Google Scholar 

  49. R. Andreozzi, V. Caprio, A. Insola and R. Marotta, Catal. Today, 1999, 53, 51–59.

    CAS  Google Scholar 

  50. A. Zapata, I. Oiler, E. Bizani, J. A. Sánchez Pérez, M. I. Maldonado and S. Malato, Catal. Today, 2009, 144, 94–99.

    CAS  Google Scholar 

  51. A. Moncayo-Lasso, A. G. Rincon, C. Pulgarin and N. Benitez, J. Photochem. Photobiol., A, 2012, 229, 46–52.

    CAS  Google Scholar 

  52. M. C. Bittencourt-Oliveira, T. C. Hereman, M. K. Cordeiro-Araújo, I. Macedo-Silva, C. T. Dias, F. F. C. Sasaki and A. N. Moura, Braz. J. Biol., 2014, 74, 753–760.

    CAS  PubMed  Google Scholar 

  53. M. M. Gehringer, V. Kewada, N. Coates and T. G. Downing, Toxicon, 2003, 41, 871–876.

    CAS  PubMed  Google Scholar 

  54. M. M-Hamvas, C. Máthé, E. Molnár, G. Vasas, I. Grigorszky and G. Borbely, Aquat. Toxicol., 2003, 62, 1–9.

    CAS  PubMed  Google Scholar 

  55. J. McElhiney, L. A. Lawton and C. Leifert, Toxicon, 2001, 39, 1411–1420.

    CAS  PubMed  Google Scholar 

  56. P. Kós, G. Gorzó, G. Surányi and G. Borbély, Anal. Biochem., 1995, 225, 49–53.

    PubMed  Google Scholar 

  57. J. Hernández-Allica, C. Garbisu, O. Barrutia and J. M. Becerril, Environ. Exp. Bot, 2007, 60, 26–32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriane Martins de Freitas.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/ d0pp00050g

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Micheletto, J., de Torres, M.A., de Paula, V.d.C.S. et al. The solar photo-Fenton process at neutral pH applied to microcystin-LR degradation: Fe2+, H2O2 and reaction matrix effects. Photochem Photobiol Sci 19, 1078–1087 (2020). https://doi.org/10.1039/d0pp00050g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/d0pp00050g

Navigation