Skip to main content
Log in

Exploration of fluorescence behavior of an imidazolium-based chemosensor in solution and in the solid state and its turn-on response to Al3+ in pure aqueous medium

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

An imidazolium-based quinoline Schiff base ImSB was developed and fully characterized by FT-IR, 1H and 13C NMR spectroscopy, mass spectrometry, and X-ray crystallography. The fluorescence behaviour of ImSB in solution and in the solid state, keto–enol stability at different concentrations and pH in aqueous medium were investigated. The UV-visible and fluorescence studies were performed to determine the response of ImSB towards different ions in aqueous medium. ImSB showed a turn-on fluorescence behaviour with high selectivity towards Al3+ over various cations and anions due to chelation-enhanced fluorescence (CHEF), inhibition of photoinduced electron transfer (PET) and restriction of C=N isomerization. The low detection limit for Al3+ was 54 nM and Job’s plot confirmed 1: 1 stoichiometry between ImSB and Al3+ with a high binding constant value of 4.16 × 106 M-1. Monitoring of Al3+ was also demonstrated in real water samples (mineral, river and tap water). The structural and electronic parameters of ImSB and ImSB-Al3+ were also studied theoretically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. S. Pinheiro, C. B. d. Assis, M. Muñoz-Peñuela, F. Barbosa Júnior, T. G. Correia and R. G. Moreira, Water temperature and acid pH influence the cytotoxic and genotoxic effects of aluminum in the freshwater teleost Astyanax altiparanae (Teleostei: Characidae), Chemosphere, 2019, 220, 266–274.

    CAS  PubMed  Google Scholar 

  2. S. Chakraborty, A. Mishra, E. Verma, B. Tiwari, A. K. Mishra and S. S. Singh, Physiological mechanisms of aluminum (Al) toxicity tolerance in nitrogen-fixing aquatic macrophyte Azolla microphylla Kaulf: phytoremediation, metabolic rearrangements, and antioxidative enzyme responses, Environ. Sci. Pollut. Res., 2019, 26, 9041–9054.

    CAS  Google Scholar 

  3. T. Stahl, S. Falk, H. Taschan, B. Boschek and H. Brunn, Evaluation of human exposure to aluminum from food and food contact materials, Eur. Food Res. Technol., 2018, 244, 2077–2084.

    CAS  Google Scholar 

  4. J. Lv, Y. Fu, G. Liu, C. Fan and S. Pu, A turn-on fluorescence sensor for the highly selective detection of Al3+ based on diarylethene and its application on test strips, RSC Adv., 2019, 9, 10395–10404.

  5. B. Das, S. Dey, G. P. Maiti, A. Bhattacharjee, A. Dhara and A. Jana, Hydrazinopyrimidine derived novel Al3+ chemo-sensor: molecular logic gate and biological applications, New J. Chem., 2018, 42, 9424–9435.

    CAS  Google Scholar 

  6. D. R. C. McLachlan, C. Bergeron, P. N. Alexandrov, W. J. Walsh, A. I. Pogue, M. E. Percy, T. P. A. Kruck, Z. Fang, N. M. Sharfman, V. Jaber, et al., Aluminum in Neurological and Neurodegenerative Disease, Mol. Neurobiol., 2019, 56, 1531–1538.

    CAS  PubMed  Google Scholar 

  7. E. Inan-Eroglu and A. Ayaz, Is aluminum exposure a risk factor for neurological disorders?, J. Res. Med. Sci., 2018, 23, 51–58.

    PubMed  PubMed Central  Google Scholar 

  8. S. Mondal, A. K. Bhanja, D. Ojha, T. K. Mondal, D. Chattopadhyay and C. Sinha, Fluorescence sensing and intracellular imaging of Al3+ ions by using naphthalene based sulfonamide chemosensor: structure, computation and biological studies, RSC Adv., 2015, 5, 73626–73638.

    CAS  Google Scholar 

  9. S. Y. Li, D. B. Zhang, J. Y. Wang, R. M. Lu, C. H. Zheng and S. Z. Pu, A novel diarylethene-hydrazinopyridine-based probe for fluorescent detection of aluminum ion and naked-eye detection of hydroxide ion, Sens. Actuators, B, 2017, 245, 263–272.

    CAS  Google Scholar 

  10. G. Bartwal, K. Aggarwal and J. M. Khurana, An ampyrone based azo dye as pH-responsive and chemo-reversible colorimetric fluorescent probe for Al3+ in semi-aqueous medium: implication towards logic gate analysis, New J. Chem., 2018, 42, 2224–2231.

    CAS  Google Scholar 

  11. D. Wu, A. C. Sedgwick, T. Gunnlaugsson, E. U. Akkaya, J. Yoon and T. D. James, Fluorescent chemosensors: the past, present and future, Chem. Soc. Rev., 2017, 46, 7105–7123.

    CAS  PubMed  Google Scholar 

  12. P. A. Gale and C. Caltagirone, Fluorescent and colorimetric sensors for anionic species, Coord. Chem. Rev., 2018, 354, 2–27.

    CAS  Google Scholar 

  13. X. Tian, X. Qi, X. Liu and Q. Zhang, Selective detection of picric acid by a fluorescent ionic liquid chemosensor, Sens. Actuators, B, 2016, 229, 520–527.

    CAS  Google Scholar 

  14. E. Jeong, S. Yoon, H. S. Lee, A. Kumar and P. S. Chae, TURN-ON fluorescence detection of cyanide using an ensemble system consisting of a dansyl-based cationic probe and dicyanovinyl derivative, Dyes Pigm., 2019, 162, 348–357.

    CAS  Google Scholar 

  15. A. Mezzetta, J. Łuczak, J. Woch, C. Chiappe, J. Nowicki and L. Guazzelli, Surface active fatty acid ILs: Influence of the hydrophobic tail and/or the imidazolium hydroxyl functionalization on aggregates formation, J. Mol. Liq., 2019, 289, 111155–111163.

    CAS  Google Scholar 

  16. S. M. Saleh, R. Ali and R. F. M. Elshaarawy, A ratiometric and selective fluorescent chemosensor for Ca(II) ions based on a novel water-soluble ionic Schiff-base, RSC Adv., 2016, 6, 68709–68718.

    CAS  Google Scholar 

  17. C.-C. Hu, Q. Gao, Z.-X. Zhu, L.-L. Chang, W.-J. Zhou, K.-S. Xia, B. Han and C.-G. Zhou, Ionic liquid-grafted probe for selective detection and individual identification of different metal ions in 100% aqueous solutions, Sens. Actuators, B, 2018, 259, 411–419.

    CAS  Google Scholar 

  18. V. Saini and B. Khungar, Recyclable imidazolium ion-tagged nickel catalyst for microwave-assisted C-S cross-coupling in water using sulfonyl hydrazide as the sulfur source, New J. Chem., 2018, 42, 12796–12801.

    CAS  Google Scholar 

  19. F. Baig, R. Kant, V. K. Gupta and M. Sarkar, Effects of non covalent interactions in light emitting properties of bispyridyl-alkyl-di-imines RSC Adv., 2015, 5, 51220–51232.

    CAS  Google Scholar 

  20. P. Nehra, B. Khungar, R. P. Singh, S. C. Sivasubramanian, P. N. Jha and V. Saini, Synthesis, characterization and applications of imidazolium ionic liquid-tagged zinc(II) complex, Inorg. Chim. Acta, 2018, 478, 260–267.

    CAS  Google Scholar 

  21. I. Yahaya, M. Chemchem, B. Aydıner, N. Seferoğlu, F. E. Tepe, L. Açık, N. A. Çerçi, M. Türk and Z. Seferoğlu, Novel fluorescent coumarin-thiophene-derived Schiff bases: Synthesis, effects of substituents, photophysical properties, DFT calculations, and biological activities, J. Photochem. Photobiol, A, 2019, 368, 296–306.

    CAS  Google Scholar 

  22. Z.-H. Pan, J.-W. Zhou and G.-G. Luo, Experimental and theoretical study of enol-keto prototropic tautomerism and photophysics of azomethine-BODIPY dyads, Phys. Chem. Chem. Phys., 2014, 16, 16290–16301.

    CAS  PubMed  Google Scholar 

  23. M. G. Bhowon, S. J. Laulloo, E. C. Hosten, M. M. Khodabaccus, L. Rhyman and P. Ramasami, Synthesis, spectroscopic, biological and DFT studies of new t-butyl substituted salicylaldimines having disulfide moiety, J. Mol. Struct, 2019, 1175, 13–23.

    CAS  Google Scholar 

  24. J. Cheng, X. Ma, Y. Zhang, J. Liu, X. Zhou and H. Xiang, Optical Chemosensors Based on Transmetalation of Salen-Based Schiff Base Complexes, Inorg. Chem., 2014, 53, 3210–3219.

    CAS  PubMed  Google Scholar 

  25. J. Sousa, D. R. Oliveira, D. Lomonaco, A. N. Correia, C. P. Sousa, P. de Lima Neto, T. F. Paulo, S. E. Mazzetto, C. S. Clemente and G. Mele, Structural, photophysical and electrochemical properties of a novel cardanol-based salophen ligand and its Mn(II) complex, J. Mol. Struct, 2019, 1181, 279–286.

    CAS  Google Scholar 

  26. O. Alici and S. Erdemir, A cyanobiphenyl containing fluorescence “turn on” sensor for Al3+ ion in CH3CN-water, Sens. Actuators, B, 2015, 208, 159–163.

    CAS  Google Scholar 

  27. D. Maity, S. Dey and P. Roy, A two-pocket Schiff-base molecule as a chemosensor for Al3+, New J. Chem., 2017, 41, 10677–10685.

    CAS  Google Scholar 

  28. B. Khungar, M. S. Rao, K. Pericherla, P. Nehra, N. Jain, J. Panwar and A. Kumar, Synthesis, characterization and microbiocidal studies of novel ionic liquid tagged Schiff bases, C. R. Chim., 2012, 15, 669–674.

    CAS  Google Scholar 

  29. P. Nehra, B. Khungar, K. Pericherla, S. C. Sivasubramanian and A. Kumar, Imidazolium ionic liquid-tagged palladium complex: an efficient catalyst for the Heck and Suzuki reactions in aqueous media, Green Chem., 2014, 16, 4266–4271.

    CAS  Google Scholar 

  30. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program, J. Appl. Crystallogr., 2009, 42, 339–341.

    CAS  Google Scholar 

  31. G. M. Sheldrick, SHELXT - integrated space-group and crystal-structure determination, Acta Crystallogr., Sect. A: Found. Adv., 2015, 71, 3–8.

    Google Scholar 

  32. G. Sheldrick, Crystal structure refinement with SHELXL, Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 3–8.

    Google Scholar 

  33. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, et al, Gaussian 09, Revision C.01, Gaussion, Inc., Wallingford CT, 2009.

  34. A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 1993, 98, 5648–5652.

    CAS  Google Scholar 

  35. C. Lee, W. Yang and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B: Condens. Matter Mater. Phys., 1988, 37, 785–789.

    CAS  Google Scholar 

  36. J. Tomasi, B. Mennucci and R. Cammi, Quantum Mechanical Continuum Solvation Models, Chem. Rev., 2005, 105, 2999–3094.

    CAS  PubMed  Google Scholar 

  37. J. Tian, X. Yan, H. Yang and F. Tian, A novel turn-on Schiff-base fluorescent sensor for aluminum(iii) ions in living cells, RSC Adv., 2015, 5, 107012–107019.

    CAS  Google Scholar 

  38. D. Chao, Highly selective detection of Zn2+ and Cd2+ with a simple amino-terpyridine compound in solution and solid state, J. Chem. Sci., 2016, 128, 133–139.

    CAS  Google Scholar 

  39. T Han, X. Gu, J. W. Y. Lam, A. C. S. Leung, R. T K. Kwok, T Han, B. Tong, J. Shi, Y. Dong and B. Z. Tang, Diaminomaleonitrile-based Schiff bases: aggregation-enhanced emission, red fluorescence, mechanochromism and bioimaging applications, J. Mater. Chem. C, 2016, 4, 10430–10434.

    CAS  Google Scholar 

  40. S. Gandhimathi, C. Balakrishnan, M. Theetharappan, M. A. Neelakantan and R. Venkataraman, Noncovalent interactions from electron density topology and solvent effects on spectral properties of Schiff bases, Spectrochim. Acta, Part A, 2017, 175, 134–144.

    CAS  Google Scholar 

  41. I. Bhattacharjee, N. Acharya, H. Bhatia and D. Ray, Dual Emission through Thermally Activated Delayed Fluorescence and Room-Temperature Phosphorescence, and Their Thermal Enhancement via Solid-State Structural Change in a Carbazole-Quinoline Conjugate, J. Phys. Chem. Lett., 2018, 9, 2733–2738.

    CAS  PubMed  Google Scholar 

  42. Y. Wang, T. Liu, L. Bu, J. Li, C. Yang, X. Li, Y. Tao and W. Yang, Aqueous Nanoaggregation-Enhanced One- and Two-Photon Fluorescence, Crystalline J-Aggregation-Induced Red Shift, and Amplified Spontaneous Emission of 9,10-Bis(p-dimethylaminostyryl)anthracene, J. Phys. Chem. C, 2012, 116, 15576–15583.

    CAS  Google Scholar 

  43. Z. Wang, N. Wang, X. Han, R. Wang and J. Chang, Interaction of two flavonols with fat mass and obesity-associated protein investigated by fluorescence quenching and molecular docking, J. Biomol. Struct. Dyn., 2018, 36, 3388–3397.

    CAS  PubMed  Google Scholar 

  44. Z. Li, Z. Wang, N. Wang, X. Han, W. Yu, R. Wang and J. Chang, Identification of the binding between three fluoronucleoside analogues and fat mass and obesity-associated protein by isothermal titration calorimetry and spectro-scopic techniques, J. Pharm. Biomed. Anal., 2018, 149, 290–295.

    CAS  PubMed  Google Scholar 

  45. T. Ren, Z. Wang, L. Zhang, N. Wang, X. Han, R. Wang and J. Chang, Study of the Binding between Camptothecin Analogs and FTO by Spectroscopy and Molecular Docking, J. Fluoresc., 2017, 27, 1467–1477.

    CAS  PubMed  Google Scholar 

  46. L. Zhang, T. Ren, X. Tian, Z. Wang, W. Yu, R. Wang and J. Chang, Investigation of the Interaction between 1,3-Diazaheterocyclic Compounds and the Fat Mass and Obesity-Associated Protein by Fluorescence Spectroscopy and Molecular Modeling, J. Fluoresc., 2017, 27, 369–378.

    CAS  PubMed  Google Scholar 

  47. S. M. Hossain, K. Singh, A. Lakma, R. N. Pradhan and A. K. Singh, A schiff base ligand of coumarin derivative as an ICT-Based fluorescence chemosensor for Al3+, Sens. Actuators, B, 2017, 239, 1109–1117.

    CAS  Google Scholar 

  48. D. Ray and P. K. Bharadwaj, A Coumarin-Derived Fluorescence Probe Selective for Magnesium, Inorg. Chem., 2008, 47, 2252–2254.

    CAS  PubMed  Google Scholar 

  49. H. Ichiba, M. Yonei, T. Sakamoto, H. Kuwayama, Y. Hamada, H. Yamada, M. Onozato, T. Hiruta, H. Nakagawa and T. Fukushima, Development of a selective fluorescent ligand for aluminum ion having a 6-chloro-pyridazine moiety, Inorg. Chim. Acta, 2015, 435, 53–59.

    CAS  Google Scholar 

  50. B. Naskar, K. Das, R. R. Mondal, D. K. Maiti, A. Requena, J. P. Cerón-Carrasco, C. Prodhan, K. Chaudhuri and S. Goswami, A new fluorescence turn-on chemosensor for nanomolar detection of Al3+ constructed from a pyridine-pyrazole system, New J. Chem., 2018, 42, 2933–2941.

    CAS  Google Scholar 

  51. C. Liu, L.-m. Liu, T.-r. Li, K. Liu and Z.-y. Yang, A simple fluorescent-colorimetric probe for selective switch-on detection of Al3+ in ethanol, Inorg. Chim. Acta, 2020, 502, 119327–119332.

    Google Scholar 

  52. M. Kumar, A. Kumar, M. S. H. Faizi, S. Kumar, M. K. Singh, S. K. Sahu, S. Kishor and R. P. John, A selective ‘turn-on’ fluorescent chemosensor for detection of Al3+ in aqueous medium: Experimental and theoretical studies, Sens. Actuators, B, 2018, 260, 888–899.

    CAS  Google Scholar 

  53. Y. Xu, S. Mao, H. Peng, F. Wang, H. Zhang, S. O. Aderinto and H. Wu, A fluorescent sensor for selective recognition of Al3+ based on naphthalimide Schiff-base in aqueous media, J. Lumin., 2017, 192, 56–63.

    CAS  Google Scholar 

  54. E. Feng, R. Lu, C. Fan, C. Zheng and S. Pu, A fluorescent sensor for Al3+ based on a photochromic diarylethene with a hydrazinobenzothiazole Schiff base unit, Tetrahedron Lett., 2017, 58, 1390–1394.

  55. N. Xiao, L. Xie, X. Zhi and C.-J. Fang, A naphthol-based highly selective fluorescence turn-on and reversible sensor for Al(III) ion, Inorg. Chem. Commun., 2018, 89, 13–17.

    CAS  Google Scholar 

  56. S. Mabhai, M. Dolai, S. Dey, A. Dhara, B. Das and A. Jana, A novel chemosensor based on rhodamine and azobenzene moieties for selective detection of Al3+ ions, New J. Chem., 2018, 42, 10191–10201.

    CAS  Google Scholar 

  57. Z. Kejík, R. Kaplánek, M. Havlík, T. Bříza, D. Vavřinová, B. Dolenský, P. Martásek and V. Král, Aluminium(III) sensing by pyridoxal hydrazone utilising the chelation enhanced fluorescence effect, J. Lumin., 2016, 180, 269–277.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharti Khungar.

Additional information

Electronic supplementary information (ESI) available. CCDC 1878488. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c9pp00477g

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, V., Krishnan, R. & Khungar, B. Exploration of fluorescence behavior of an imidazolium-based chemosensor in solution and in the solid state and its turn-on response to Al3+ in pure aqueous medium. Photochem Photobiol Sci 19, 931–942 (2020). https://doi.org/10.1039/c9pp00477g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00477g

Navigation