Skip to main content

Advertisement

Log in

Quantification of micropolarity and microviscosity of aggregation and salt-induced gelation of sodium deoxycholate (NaDC) using Nile red fluorescence

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

This study reports the utility of the hydrophobic probe Nile Red (NR) to understand the concentration nduced microenvironmental changes of sodium deoxycholate (NaDC) bile salt from the premicellar to postmicellar range. The spectroscopic properties like absorbance value, fluorescence intensity and fluorescence lifetime of NR are significantly sensitive towards different states of aggregation of NaDC bile salt. The critical aggregation concentrations of different states (dimer to primary micellar aggregates (1.0 mM), secondary micellar aggregates (7.0 mM), and higher micellar aggregates (14 mM)) have been determined from the absorbance value and fluorescence intensity measurements. The ET(30) polarity parameter values suggest a considerable decrease in the micropolarity with an increase in NaDC concentrations. Furthermore, the spectroscopic properties of NR are also sensitive towards the NaCl induced gelation process of NaDC bile salt. Changes in the micropolarity and microviscosity of the NaDC + NaCl mixed system have been estimated using the emission maximum value (cm−1) and fluorescence lifetime values of NR with an increase in the NaCl concentration. Microviscosity of the medium increases from ~19 mPa s to ~26 mPa s from the sol phase to the gel phase. Temperature dependence of both size and phase changes of the NaDC + NaCl (30 mM + 1 M) gel network has been studied using differential scanning calorimetry and dynamic light scattering studies. Temperature induced polarity and microviscosity changes of the NaDC + NaCl (30 mM + 1 M) gel network have also been studied using the fluorescence properties of NR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. J. Drummond and C. Fong, Surfactant self-assembly objects as novel drug delivery vehicles, Curr. Opin. Colloid Interface Sci., 2000, 4, 449–456.

    Article  Google Scholar 

  2. J. C. Shah, Y. Sadhale and D. M. Chilukuri, Cubic phase gels as drug delivery systems, Adv. Drug Delivery Rev., 2001, 47, 229–250.

    Article  CAS  Google Scholar 

  3. M.J. Monte, J.J. Marin, A. Antelo and J. Vazquez-Tato, Bile acids: chemistry, physiology, and pathophysiology, World J. Gastroenterol., 2009, 15, 804–816.

    CAS  Google Scholar 

  4. N. Pavlović, K. Stankov and M. Mikov, Probiotics–interactions with bile acids and impact on cholesterol metabolism, Appl. Biochem. Biotechnol., 2012, 168, 1880–1895.

    Google Scholar 

  5. M. Stojančević, K. Stankov and M. Mikov, The impact of farnesoid X receptor activation on intestinal permeability in inflammatory bowel disease, Can. J. Gastroenterol., 2012, 26, 631–637.

    Google Scholar 

  6. J. Swain, Molecular level investigation on the interaction of pluronic f127 and human intestinal bile salts using excited state prototropism of 1-naphthol, J. Photochem. Photobiol., B, 2016, 160, 61–67.

    Article  CAS  Google Scholar 

  7. K. Matsuoka and Y. Moroi, Micelle formation of sodium deoxycholate and sodium ursodeoxycholate, Biochim. Biophys. Acta, 2002, 1508, 189–199.

    Google Scholar 

  8. U. Subuddhi and A. K. Mishra, Micellization of bile salts in aqueous medium: a fluorescence study, Colloids Surf., B, 2007, 57, 102–107.

    Article  CAS  Google Scholar 

  9. M. Mohapatra and A. K. Mishra, 1-Naphthol as a sensitive fluorescent molecular probe for monitoring the interaction of submicellar concentration of bile salt with a bilayer membrane of DPPC, a lung surfactant, J. Phys. Chem. B, 2010, 114, 14934–14940.

    Article  CAS  Google Scholar 

  10. Y. Yunomiya, T. Kunitake, T. Tanaka, G. Sugihara and T. Nakashima, Micellization of mixed system of bile salt and nonionic surfactant: sodium deoxycholate and decanoyl- n-methylglucamide, J. Colloid Interface Sci., 1998, 208, 1–5.

    Article  CAS  Google Scholar 

  11. D. G. Oakenfull and L. R. Fisher, The role of hydrogen bonding in the formation of bile salt, J. Phys. Chem., 1977, 81, 1838–1841.

    Article  CAS  Google Scholar 

  12. M. C. Carey and M. D. Small, Micelle formation by bile salts. physical-chemical and thermodynamic considerations, Arch. Intern. Med., 1972, 130, 506–527.

    CAS  Google Scholar 

  13. F. Mustan, A. Ivanova, G. Madjarova, S. Tcholakova and N. Denkov, Molecular dynamics simulation of the aggregation patterns in aqueous solutions of bile salts at physiological conditions, J. Phys. Chem. B, 2015, 119, 15631–15643.

    Article  CAS  Google Scholar 

  14. Q. Chai, Y. Jiao and X. Yu, Hydrogels for biomedical applications: their characteristics and the mechanisms behind them, Gels, 2017, 3, 1–15.

    Article  Google Scholar 

  15. R. Li, E. Carpentier, E. D. Newell, L. M. Olague, E. Heafey, C. Yihwa and C. Bohne, Effect of the structure of bile salt aggregates on the binding of aromatic guests and the accessibility of anions, Langmuir, 2009, 25, 13800–13808.

    Article  CAS  Google Scholar 

  16. D. Fuentelba, K. Thurber, E. Bovero, T. C. S. Pace and C. Bohne, Effect of sodium chloride on the binding of polyaromatic hydrocarbon guests with sodium cholate aggregates, Photochem. Photobiol. Sci., 2011, 10, 1420–1430.

    Google Scholar 

  17. X. Sun, X. Xin, N. Tang, L. Guo, L. Wang and G. Xu, Manipulation of the gel behavior of biological surfactant sodium deoxycholate by amino acids, J. Phys. Chem. B, 2014, 118, 824–832.

    Article  CAS  Google Scholar 

  18. A. Jover, F. Meijide, E. Rodriguez Nunez and J. Vazquez Tato, M. Mosquera and F. Rodriguez Prieto, Unusual pyrene excimer formation during Sodium deoxycholate gelation, Langmuir, 1996, 12, 1789–1793.

    CAS  Google Scholar 

  19. A. Y. Jee, S. Park, H. Kwon and M. Lee, Excited state dynamics of Nile red in polymers, Chem. Phys. Lett., 2009, 477, 112–115.

    Article  CAS  Google Scholar 

  20. M. M. G. Krishna, Excited-state kinetics of the hydrophobic probe Nile red in membranes and micelles, J. Phys. Chem. A, 1999, 103, 3589–3595.

    Article  CAS  Google Scholar 

  21. A. Cser, K. Nagy and L. Biczok, Fluorescence lifetime of Nile red as a probe for the hydrogen bonding strength with its microenvironment, Chem. Phys. Lett., 2002, 360, 473–478.

    Article  CAS  Google Scholar 

  22. N. Ghoneim, Photophysics of Nile red in solution steady state spectroscopy, Spectrochim. Acta, Part A, 2000, 56, 1003–1010.

    Article  CAS  Google Scholar 

  23. A. G. Gilani, M. Moghadama and M. S. Zakerhamidi, Solvatochromism of Nile red in anisotropic media, Dyes Pigm., 2012, 92, 1052–1057.

    Article  Google Scholar 

  24. R. Saxena, S. Shrivastava, S. Haldar, A. S. Klymchenko and A. Chattopadhyay, Location, dynamics and solvent relaxation of a Nile red-basedphase-sensitive fluorescent membrane probe, Chem. Phys. Lipids, 2014, 183, 1–8.

    Article  CAS  Google Scholar 

  25. I. N. Kurniasih, H. Liang, P. C. Mohr, G. Khot, J. P. Rabe and A. Mohr, Nile red dye in aqueous surfactant and micellar solution, Langmuir, 2015, 31, 2639–2648.

    Article  CAS  Google Scholar 

  26. C. Lin, J. Zhao and R. Jiang, Nile red probing for the micelle-to-vesicle transition of AOT in aqueous solution, Chem. Phys. Lett., 2008, 464, 77–81.

    Article  CAS  Google Scholar 

  27. A. Datta, D. Mandal, S. K. Pal and K. Bhattacharyya, Intramolecular charge transfer processes in confined systems: Nile red in reverse micelles, J. Phys. Chem. B, 1997, 101, 10221–10225.

    Article  CAS  Google Scholar 

  28. P. Greenspan, E. P. Mayer and S. D. Fowler, Nile red: a selective fluorescent stain for intracellular lipid droplets, J. Cell Biol., 1985, 100, 965–973.

    Article  CAS  Google Scholar 

  29. D. L. Sackett, J. R. Knutson and J. Wolff, Hydrophobic surfaces of tubulin probed by time-resolved and steady –state fluorescence of Nile red, J. Biol. Chem., 1990, 265, 14899–14906.

    Article  CAS  Google Scholar 

  30. P. Hazra, D. Chakrabarty, A. Chakraborty and N. Sarkar, Intramoleular charge transfer and solvation dynamics of Nile red in the nanocavity of cyclodextrins, Chem. Phys. Lett., 2004, 388, 150–157.

    Article  CAS  Google Scholar 

  31. D. N. Sackett and J. Wolff, Nile red as a polarity-sensitive fluorescent probe of hydrophobic protein surfaces, Anal. Biochem., 1987, 167, 228–234.

    CAS  Google Scholar 

  32. N. Sarkar, K. Das, D. N. Nath and K. Bhattacharyya, Twisted charge transfer process of Nile red in homogeneous solution and in faujasite zeolite, Langmuir, 1994, 10, 326–329.

    Article  CAS  Google Scholar 

  33. J. F. Deye, T. A. Berger and A. G. Anderson, Nile red as a solvatochromic dye for measuring solvent strength in normal liquids and mixtures of normal liquids with supercritical and near critical fluids, Anal. Chem., 1990, 62, 615–622.

    CAS  Google Scholar 

  34. C. Reichardt, Solvatochromic dyes as solvent polarity indicators, Chem. Rev., 1594, 94, 2319–2358.

    Article  Google Scholar 

  35. J. Swain and A. K. Mishra, Nile red fluorescence for quantitative monitoring of micropolarity and microviscosity of pluronic F127 in aqueous media, Photochem. Photobiol. Sci., 2016, 15, 1400–1407.

    CAS  Google Scholar 

  36. Th. Forster and G. Z. Hoffmann, Effect of viscosity on the fluorescence quantum yield of some dye systems, J. Phys. Chem., 1971, 75, 63–76.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Kumar Mishra.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c9pp00293f

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swain, J., Mishra, J., Ghosh, G. et al. Quantification of micropolarity and microviscosity of aggregation and salt-induced gelation of sodium deoxycholate (NaDC) using Nile red fluorescence. Photochem Photobiol Sci 18, 2773–2781 (2019). https://doi.org/10.1039/c9pp00293f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00293f

Navigation