Skip to main content
Log in

Quantitative imaging of magnetic field distribution using a pyrene-based magnetosensing exciplex fluorophore

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Quantitative imaging of magnetic field distribution was carried out using a pyrene-based magnetosensing exciplex fluorophore, pyrene-(CH2)12-O-(CH2)2-N,N-dimethylaniline (Py-12-O-2-DMA), on a conventional fluorescence microscope with an off-the-shelf LED lamp. No continuous sample supply was required for the process. The solvent system (anisole : DMF, 50 : 50 (v/v)) was carefully selected for monitoring the extent of modulation caused by the external magnetic field. The emission from Py-12-O-2-DMA increased by ca. 1.5 times under an external magnetic field of 50 mT. The pyrene-based reporter was ca. 24.7 times brighter than a previously reported phenanthrene-based complex when excited by using the widely available 355 nm excitation. Moreover, the maximum wavelength up to which Py-12-O-2-DMA could be excited (up to 380 nm) was longer than the wavelength up to which Phen-12-O-2-DMA could be excited. The combined advantages allowed the capture of magnetic field images with a high S/N ratio under milder conditions such as low illumination power, reduced sample concentration, and simpler optical setup. The system was also found to be feasible for 3D magnetic field distribution imaging by two-photon fluorescence microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. J. Kavarnos and N. J. Turro, Photosensitization by reversible electron transfer: theories, experimental evidence, and examples, Chem. Rev., 1986, 86, 401–449.

    Article  CAS  Google Scholar 

  2. G. J. Kavarnos, Fundamentals of Photoinduced Electron Transfer, VCH Publishers, Inc., New York, 1993.

  3. J. B. Birks, Excimers, Rep. Prog. Phys., 1975, 38, 903–974.

    CAS  Google Scholar 

  4. I. R. Gould, R. H. Young, L. J. Mueller and S. Farid, Mechanisms of Exciplex Formation. Roles of Superexchange, Solvent Polarity, and Driving Force for Electron Transfer, J. Am. Chem. Soc., 1994, 116, 8176–8187.

    Article  CAS  Google Scholar 

  5. M. Koch, R. Letrun and E. Vauthey, Exciplex formation in bimolecular photoinduced electron-transfer investigated by ultrafast time-resolved infrared spectroscopy, J. Am. Chem. Soc., 2014, 136, 4066–4074.

    Article  CAS  Google Scholar 

  6. L. Walsh, A. Gbaj, H. E. Savage, M. C. Bacigalupo, E. V. Bichenkova and K. T. Douglas, Target-assembled ExciProbes: application to DNA detection at the level of PCR product and plasmid DNA, J. Biomol. Struct. Dyn., 2007, 25, 219–230.

    Article  CAS  Google Scholar 

  7. X. Wang, L. Liu, S. Zhu, J. Peng and L. Li, Preparation of exciplex-based fluorescent organic nanoparticles and their application in cell imaging, RSC Adv., 2017, 7, 40842–40848.

    Article  CAS  Google Scholar 

  8. C.-I. Chao and S.-A. Chen, White light emission from exciplex in a bilayer device with two blue light-emitting polymers, Appl. Phys. Lett., 1998, 73, 426–428.

    Article  CAS  Google Scholar 

  9. A. C. Morteani, P. Sreearunothai, L. M. Herz, R. H. Friend and C. Silva, Exciton regeneration at polymeric semiconductor heterojunctions, Phys. Rev. Lett., 2004, 92, 247402.

    Google Scholar 

  10. T. Offermans, P. A. van Hal, S. C. J. Meskers, M. M. Koetse and R. A. J. Janssen, Exciplex dynamics in a blend ofπ-conjugated polymers with electron donating and accepting properties: MDMO-PPV and PCNEPV, Phys. Rev. B: Condens. Matter Mater. Phys., 2005, 72, 045213.

    Google Scholar 

  11. J. J. Benson-Smith, J. Wilson, C. Dyer-Smith, K. Mouri, S. Yamaguchi, H. Murata and J. Nelson, Long-Lived Exciplex Formation and Delayed Exciton Emission in Bulk Heterojunction Blends of Silole Derivative and Polyfluorene Copolymer: The Role of Morphology on Exciplex Formation and Charge Separation, J. Phys. Chem. B, 2009, 113, 7794–7799.

    Article  CAS  Google Scholar 

  12. W. E. B. Shepherd, A. D. Platt, M. J. Kendrick, M. A. Loth, J. E. Anthony and O. Ostroverkhova, Energy Transfer and Exciplex Formation and Their Impact on Exciton and Charge Carrier Dynamics in Organic Films, J. Phys. Chem. Lett., 2011, 2, 362–366.

    Article  CAS  Google Scholar 

  13. D. J. Stewart, M. J. Dalton, R. N. Swiger, T. M. Cooper, J. E. Haley and L.-S. Tan, Exciplex Formation in Blended Spin-Cast Films of Fluorene-Linked Dyes and Bisphthalimide Quenchers, J. Phys. Chem. A, 2013, 117, 3909–3917.

    Article  CAS  Google Scholar 

  14. M. Sarma and K. T. Wong, Exciplex: An Intermolecular Charge-Transfer Approach for TADF, ACS Appl. Mater. Interfaces, 2018, 10, 19279–19304.

    CAS  Google Scholar 

  15. M. Colella, A. Danos and A. P. Monkman, Less Is More: Dilution Enhances Optical and Electrical Performance of a TADF Exciplex, J. Phys. Chem. Lett., 2019, 10, 793–798.

    Article  CAS  Google Scholar 

  16. H. Staerk, W. Kühnle, R. Treichel and A. Weller, Magnetic field dependence of intramolecular exciplex formation in polymethyelene-linked A-D systems, Chem. Phys. Lett., 1985, 118, 19–24.

    Article  CAS  Google Scholar 

  17. Y. Tanimoto, K. Hasegawa, N. Okada, M. Itoh, K. Iwai, K. Sugioka, F. Takemura, R. Nakagaki and S. Nagakura, Magnetic field effects on the intra- and intermolecular exciplex fluorescence of phenanthrene and dimethylaniline, J. Phys. Chem., 1989, 93, 3586–3594.

    Article  CAS  Google Scholar 

  18. U. Werner and H. Staerk, Magnetic field effect in the recombination reaction of radical ion pairs: Dependence on solvent dielectric constant, J. Phys. Chem., 1995, 99, 248–254.

    Article  CAS  Google Scholar 

  19. H. Cao, Y. Fujiwara, T. Haino, Y. Fukazawa, C.-H. Tung and Y. Tanimoto, Magnetic Field Effects on Intramolecular Exciplex Fluorescence of Chain-Linked Phenanthrene and N,N-Dimethylaniline: Influence of Chain Length, Solvent, and Temperature, Bull. Chem. Soc. Jpn., 1996, 69, 2801–2813.

    Article  CAS  Google Scholar 

  20. H. Cao, K. Miyata, T. Tamura, Y. Fujiwara, A. Katsuki, C.-H. Tung and Y. Tanimoto, Effects of High Magnetic Field on the Intramolecular Exciplex Fluorescence of Chain-Linked Phenanthrene and Dimethylaniline, J. Phys. Chem. A, 1997, 101, 407–411.

    Article  CAS  Google Scholar 

  21. N. Yang and A. E. Cohen, Optical imaging through scattering media via magnetically modulated fluorescence, Opt. Express, 2010, 18, 25461–25467.

    Article  CAS  Google Scholar 

  22. H. Lee, N. Yang and A. E. Cohen, Mapping nanomagnetic fields using a radical pair reaction, Nano Lett., 2011, 11, 5367–5372.

    Article  CAS  Google Scholar 

  23. S. Richert, A. Rosspeintner, S. Landgraf, G. Grampp, E. Vauthey and D. R. Kattnig, Time-resolved magnetic field effects distinguish loose ion pairs from exciplexes, J. Am. Chem. Soc., 2013, 135, 15144–15152.

    Article  CAS  Google Scholar 

  24. H. M. Hoang, T. B. V. Pham, G. Grampp and D. R. Kattnig, Exciplexes versus Loose Ion Pairs: How Does the Driving Force Impact the Initial Product Ratio of Photoinduced Charge Separation Reactions?, J. Phys. Chem. Lett., 2014, 5, 3188–3194.

    Article  CAS  Google Scholar 

  25. V. T. B. Pham, H. M. Hoang, G. Grampp and D. R. Kattnig, Effects of Preferential Solvation Revealed by Time-Resolved Magnetic Field Effects, J. Phys. Chem. B, 2017, 121, 2677–2683.

    Article  CAS  Google Scholar 

  26. R. Kaptein, Chemically Induced Dynamic Nuclear Polarization. VIII. Spin Dynamics and Diffusion of Radical Pairs, J. Am. Chem. Soc., 1972, 94, 6251–6262.

    Article  CAS  Google Scholar 

  27. U. E. Steiner and T. Ulrich, Magnetic field effects in chemical kinetics and related phenomena, Chem. Rev., 1989, 89, 51–147.

    Article  CAS  Google Scholar 

  28. H. Hayashi, Y. Sakaguchi and M. Wakasa, Magnetic Field Effects and Spin Dynamics of Radical Reactions in Solution, Bull. Chem. Soc. Jpn., 2001, 74, 773–783.

    Article  CAS  Google Scholar 

  29. J. R. Woodward, Radical Pairs in Solution, Prog. React. Kinet. Mech., 2002, 27, 165–207.

    Article  CAS  Google Scholar 

  30. C. T. Rodgers and P. J. Hore, Chemical magnetoreception in birds: The radical pair mechanism, Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 353–360.

    Article  CAS  Google Scholar 

  31. H. Lee, D. Brinks and A. E. Cohen, Two-photon imaging of a magneto-fluorescent indicator for 3D optical magnetometry, Opt. Express, 2015, 23, 28022–28030.

    Article  CAS  Google Scholar 

  32. H. Staerk, H. G. Busmann, W. Kühnle and R. Treichel, Temperature study of the magnetic field effect in photogenerated flexibly linked radical ion pairs. Influence of the stochastically modulated exchange interaction, J. Phys. Chem., 1991, 95, 1906–1917.

    Article  CAS  Google Scholar 

  33. N. Yang, PhD thesis, Molecules in Sculpted Fields: Magnetic Field Effects and Multipole Transitions, Havard University, 2012.

  34. H. M. Hoang, V. T. B. Pham, G. Grampp and D. R. Kattnig, Magnetic Field-Sensitive Radical Pair Dynamics in Polymethylene Ether-Bridged Donor–Acceptor Systems, ACS Omega, 2018, 3, 10296–10305.

    Article  CAS  Google Scholar 

  35. P. R. Salvi, P. Foggi and E. Castellucci, The two-photon excitation spectrum of pyrene, Chem. Phys. Lett., 1983, 98, 206–211.

    Article  CAS  Google Scholar 

  36. B. Dick and G. Hohlneicher, Two-photon excitation spectroscopy of phenanthrene singlet states below 50000 cm−1, Chem. Phys. Lett., 1983, 97, 324–330.

    Article  CAS  Google Scholar 

  37. C. R. Timmel, U. Till, B. Brocklehurst, K. A. McLauchlan and P. J. Hore, Effects of weak magnetic fields on free radical recombination reactions, Mol. Phys., 1998, 95, 71–89.

    CAS  Google Scholar 

  38. W. Denk, J. H. Strickler and W. W. Webb, Two-photon laser scanning fluorescence microscopy, Science, 1990, 248, 73–76.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hohjai Lee.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c9pp00277d

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D., Jung, M., Kim, H. et al. Quantitative imaging of magnetic field distribution using a pyrene-based magnetosensing exciplex fluorophore. Photochem Photobiol Sci 18, 2688–2695 (2019). https://doi.org/10.1039/c9pp00277d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00277d

Navigation