Skip to main content
Log in

Homogeneous photochemical water oxidation with metal salophen complexes in neutral media

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The development of water oxidation catalysts based on Earth-abundant metals that can function at neutral pH remains a basic chemical challenge. Here, we report that salophen complexes with Ni(II), Cu(II), and Mn(II) can catalyse photochemical water oxidation to molecular oxygen in the presence of [Ru(bpy)3]2+ as a photosensitizer and Na2S2O8 as an oxidant in phosphate buffer of pH 7.0. Experimental results including CV, SEM, EDS, ESI-MS, and DLS measurements on the metal salophen complex-catalysed water oxidation to oxygen suggest that the catalytic activity of the catalysts is molecular in origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. N. S. Lewis and D. G. Nocera, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 15729–15735.

    Article  CAS  Google Scholar 

  2. H. Dau and I. Zaharieva, Acc. Chem. Res., 2009, 42, 1861–1870.

    Article  CAS  PubMed  Google Scholar 

  3. Y. Umena, K. Kawakami, J.-R. Shen and N. Kamiya, Nature, 2011, 473, 55–60.

    Article  CAS  PubMed  Google Scholar 

  4. D. Gust, T. A. Moore and A. L. Moore, Acc. Chem. Res., 2009, 42, 1890–1898.

    Article  CAS  PubMed  Google Scholar 

  5. P. E. Siegbahn, Acc. Chem. Res., 2009, 42, 1871–1880.

    Article  CAS  PubMed  Google Scholar 

  6. A. Magnuson, M. Anderlund, O. Johansson, P. Lindblad, R. Lomoth, T. Polivka, S. Ott, K. Stensjö, S. Styring and V. Sundström, Acc. Chem. Res., 2009, 42, 1899–1909.

    Article  CAS  PubMed  Google Scholar 

  7. J. P. McEvoy and G. W. Brudvig, Chem. Rev., 2006, 106, 4455–4483.

    Article  CAS  PubMed  Google Scholar 

  8. L. Hammarström and S. Hammes-Schiffer, Acc. Chem. Res., 2009, 42, 1859–1860.

    Article  CAS  PubMed  Google Scholar 

  9. L. Sun, L. Hammarström, B. Åkermark and S. Styring, Chem. Soc. Rev., 2001, 30, 36–49.

    Article  CAS  Google Scholar 

  10. H. Dau, C. Limberg, T. Reier, M. Risch, S. Roggan and P. Strasser, ChemCatChem, 2010, 2, 724–761.

    Article  CAS  Google Scholar 

  11. P. D. Tran, V. Artero and M. Fontecave, Energy Environ. Sci., 2010, 3, 727–747.

    Article  CAS  Google Scholar 

  12. M. Yagi, A. Syouji, S. Yamada, M. Komi, H. Yamazaki and S. Tajima, Photochem. Photobiol. Sci., 2009, 8, 139–147.

    Article  CAS  Google Scholar 

  13. Y. Tamaura, M. Kojima, T. Sano, Y. Ueda, N. Hasegawa and M. Tsuji, Int. J. Hydrogen Energy, 1998, 23, 1185–1191.

    Article  CAS  Google Scholar 

  14. R. Tagore, R. H. Crabtree and G. W. Brudvig, Inorg. Chem., 2008, 47, 1815–1823.

    Article  CAS  PubMed  Google Scholar 

  15. G. C. Dismukes, R. Brimblecombe, G. A. Felton, R. S. Pryadun, J. E. Sheats, L. Spiccia and G. F. Swiegers, Acc. Chem. Res., 2009, 42, 1935–1943.

    Article  CAS  PubMed  Google Scholar 

  16. M. M. Najafpour, S. Heidari, E. Amini, M. Khatamian, R. Carpentier and S. I. Allakhverdiev, J. Photochem. Photobiol., B, 2014, 133, 124–139.

    Article  CAS  Google Scholar 

  17. S. W. Gersten, G. J. Samuels and T. J. Meyer, J. Am. Chem. Soc., 1982, 104, 4029–4030.

    Article  CAS  Google Scholar 

  18. A. Harriman, I. J. Pickering, J. M. Thomas and P. A. Christensen, J. Chem. Soc., Faraday Trans. 1, 1988, 84, 2795–2806.

    Article  Google Scholar 

  19. J. J. Concepcion, J. W. Jurss, M. K. Brennaman, P. G. Hoertz, A. O. T. Patrocinio, N. Y. Murakami Iha, J. L. Templeton and T. J. Meyer, Acc. Chem. Res., 2009, 42, 1954–1965.

    Article  CAS  PubMed  Google Scholar 

  20. J. F. Hull, D. Balcells, J. D. Blakemore, C. D. Incarvito, O. Eisenstein, G. W. Brudvig and R. H. Crabtree, J. Am. Chem. Soc., 2009, 131, 8730–8731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. N. D. McDaniel, F. J. Coughlin, L. L. Tinker and S. Bernhard, J. Am. Chem. Soc., 2008, 130, 210–217.

    Article  CAS  PubMed  Google Scholar 

  22. M. Graetzel, Acc. Chem. Res., 1981, 14, 376–384.

    Article  CAS  Google Scholar 

  23. W. Su, H. A. Younus, K. Zhou, Z. A. Khattak, S. Chaemcheun, C. Chen and F. Verpoort, Catal. Sci. Technol., 2017, 7, 387–395.

    Article  CAS  Google Scholar 

  24. H. B. Gray, Nat. Chem., 2009, 1, 7.

    Article  CAS  PubMed  Google Scholar 

  25. H. Feizi, R. Bagheri, Z. Jagličić, J. P. Singh, K. H. Chae, Z. Song and M. M. Najafpour, Dalton Trans., 2019, 48, 547–557.

    Article  CAS  PubMed  Google Scholar 

  26. M. Blasco-Ahicart, J. Soriano-López, J. J. Carbó, J. M. Poblet and J. Galan-Mascaros, Nat. Chem., 2018, 10, 24.

    Article  CAS  PubMed  Google Scholar 

  27. H. A. Younus, N. Ahmad, A. H. Chughtai, M. Vandichel, M. Busch, K. Van Hecke, M. Yusubov, S. Song and F. Verpoort, ChemSusChem, 2017, 10, 862–875.

    Article  CAS  PubMed  Google Scholar 

  28. J. Lin, Q. Han and Y. Ding, Chem. Rec., 2018, 18, 1531–1547.

    Article  CAS  PubMed  Google Scholar 

  29. E. Pizzolato, M. Natali, B. Posocco, A. M. López, I. Bazzan, M. Di Valentin, P. Galloni, V. Conte, M. Bonchio and F. Scandola, Chem. Commun., 2013, 49, 9941–9943.

    Article  CAS  Google Scholar 

  30. N. S. McCool, D. M. Robinson, J. E. Sheats and G. C. Dismukes, J. Am. Chem. Soc., 2011, 133, 11446–11449.

    Article  CAS  PubMed  Google Scholar 

  31. S. Berardi, G. La Ganga, M. Natali, I. Bazzan, F. Puntoriero, A. Sartorel, F. Scandola, S. Campagna and M. Bonchio, J. Am. Chem. Soc., 2012, 134, 11104–11107.

    Article  CAS  PubMed  Google Scholar 

  32. C.-F. Leung, S.-M. Ng, C.-C. Ko, W.-L. Man, J. Wu, L. Chen and T.-C. Lau, Energy Environ. Sci., 2012, 5, 7903–7907.

    Article  CAS  Google Scholar 

  33. T. Nakazono, A. R. Parent and K. Sakai, Chem. Commun., 2013, 49, 6325–6327.

    Article  CAS  Google Scholar 

  34. D. Wang and J. T. Groves, Proc. Natl. Acad. Sci. U. S. A., 2013, 110, 15579–15584.

    CAS  Google Scholar 

  35. D. J. Wasylenko, C. Ganesamoorthy, J. Borau-Garcia and C. P. Berlinguette, Chem. Commun., 2011, 47, 4249–4251.

    Article  CAS  Google Scholar 

  36. D. K. Dogutan, R. McGuire Jr. and D. G. Nocera, J. Am. Chem. Soc., 2011, 133, 9178–9180.

    Article  CAS  PubMed  Google Scholar 

  37. H. Wang, Y. Lu, E. Mijangos and A. Thapper, Chin. J. Chem., 2014, 32, 467–473.

    Article  CAS  Google Scholar 

  38. S. Fu, Y. Liu, Y. Ding, X. Du, F. Song, R. Xiang and B. Ma, Chem. Commun., 2014, 50, 2167–2169.

    Article  CAS  Google Scholar 

  39. D. Hong, J. Jung, J. Park, Y. Yamada, T. Suenobu, Y.-M. Lee, W. Nam and S. Fukuzumi, Energy Environ. Sci., 2012, 5, 7606–7616.

    Article  CAS  Google Scholar 

  40. M. Dincă, Y. Surendranath and D. G. Nocera, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 10337–10341.

    Article  Google Scholar 

  41. D. K. Bediako, B. Lassalle-Kaiser, Y. Surendranath, J. Yano, V. K. Yachandra and D. G. Nocera, J. Am. Chem. Soc., 2012, 134, 6801–6809.

    Article  CAS  PubMed  Google Scholar 

  42. G. Chen, L. Chen, S. M. Ng and T. C. Lau, ChemSusChem, 2014, 7, 127–134.

    Article  CAS  PubMed  Google Scholar 

  43. X. Yu, T. Hua, X. Liu, Z. Yan, P. Xu and P. Du, ACS Appl. Mater. Interfaces, 2014, 6, 15395–15402.

    Article  CAS  PubMed  Google Scholar 

  44. A. Singh, S. L. Chang, R. K. Hocking, U. Bach and L. Spiccia, Energy Environ. Sci., 2013, 6, 579–586.

    Article  CAS  Google Scholar 

  45. A. Singh, S. L. Chang, R. K. Hocking, U. Bach and L. Spiccia, Catal. Sci. Technol., 2013, 3, 1725–1732.

    Article  CAS  Google Scholar 

  46. Z. Chen and T. J. Meyer, Angew. Chem., 2013, 125, 728–731.

    Article  Google Scholar 

  47. M.-T. Zhang, Z. Chen, P. Kang and T. J. Meyer, J. Am. Chem. Soc., 2013, 135, 2048–2051.

    Article  CAS  PubMed  Google Scholar 

  48. X. Liu, H. Jia, Z. Sun, H. Chen, P. Xu and P. Du, Electrochem. Commun., 2014, 46, 1–4.

    Article  CAS  Google Scholar 

  49. W. C. Ellis, N. D. McDaniel, S. Bernhard and T. J. Collins, J. Am. Chem. Soc., 2010, 132, 10990–10991.

    Article  CAS  PubMed  Google Scholar 

  50. J. L. Fillol, Z. Codolà, I. Garcia-Bosch, L. Gómez, J. J. Pla and M. Costas, Nat. Chem., 2011, 3, 807–813.

    Article  CAS  PubMed  Google Scholar 

  51. D. Hong, S. Mandal, Y. Yamada, Y.-M. Lee, W. Nam, A. Llobet and S. Fukuzumi, Inorg. Chem., 2013, 52, 9522–9531.

    Article  CAS  PubMed  Google Scholar 

  52. M. M. Najafpour, F. Ebrahimi, R. Safdari, M. Z. Ghobadi, M. Tavahodi and P. Rafighi, Dalton Trans., 2015, 44, 15435–15440.

    Article  CAS  PubMed  Google Scholar 

  53. W.-B. Yu, Q.-Y. He, X.-F. Ma, H.-T. Shi and X. Wei, Dalton Trans., 2015, 44, 351–358.

    Article  CAS  PubMed  Google Scholar 

  54. M. M. Najafpour, R. Safdari, F. Ebrahimi, P. Rafighi and R. Bagheri, Dalton Trans., 2016, 45, 2618–2623.

    Article  CAS  PubMed  Google Scholar 

  55. M. A. Asraf, H. A. Younus, C. I. Ezugwua and A. Mehta, Catal. Sci. Technol., 2016, 6, 4271–4282.

    Article  CAS  Google Scholar 

  56. M. A. Asraf, H. A. Younus, M. S. Yusubov and F. Verpoort, Catal. Sci. Technol., 2015, 5, 4901–4925.

    Article  CAS  Google Scholar 

  57. Y. Liu, Y. Han, Z. Zhang, W. Zhang, W. Lai, Y. Wang and R. Cao, Chem. Sci., 2019, 10, 2613–2622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. S. I. Shylin, M. V. Pavliuk, L. D’Amario, F. Mamedov, J. Sá, G. Berggren and I. O. Fritsky, Chem. Commun., 2019, 55, 3335–3338.

    Article  CAS  Google Scholar 

  59. S. Fukuzumi, Y.-M. Lee and W. Nam, Dalton Trans., 2019, 48, 779–798.

    Article  CAS  PubMed  Google Scholar 

  60. S. Fukuzumi and D. Hong, Eur. J. Inorg. Chem., 2014, 2014, 645–659.

    Article  CAS  Google Scholar 

  61. F. Song, Y. Ding, B. Ma, C. Wang, Q. Wang, X. Du, S. Fu and J. Song, Energy Environ. Sci., 2013, 6, 1170–1184.

    Article  CAS  Google Scholar 

  62. J. Lin, B. Ma, M. Chen and Y. Ding, Chin. J. Catal., 2018, 39, 463–471.

    Article  CAS  Google Scholar 

  63. D. A. Atwood and M. J. Harvey, Chem. Rev., 2001, 101, 37–52.

    Article  CAS  PubMed  Google Scholar 

  64. P. G. Cozzi, Chem. Soc. Rev., 2004, 33, 410–421.

    Article  CAS  PubMed  Google Scholar 

  65. C. Baleizao and H. Garcia, Chem. Rev., 2006, 106, 3987–4043.

    Article  CAS  PubMed  Google Scholar 

  66. H. Chen, Z. Sun, X. Liu, A. Han and P. Du, J. Phys. Chem. C, 2015, 119(17), 8998–9004.

    Article  CAS  Google Scholar 

  67. M. W. Kanan and D. G. Nocera, Science, 2008, 321, 1072–1075.

    Article  CAS  PubMed  Google Scholar 

  68. S. M. Barnett, K. I. Goldberg and J. M. Mayer, Nat. Chem., 2012, 4, 498–502.

    Article  CAS  PubMed  Google Scholar 

  69. M. L. Rigsby, S. Mandal, W. Nam, L. C. Spencer, A. Llobet and S. S. Stahl, Chem. Sci., 2012, 3, 3058–3062.

    Article  CAS  Google Scholar 

  70. T. Zhang, C. Wang, S. Liu, J.-L. Wang and W. Lin, J. Am. Chem. Soc., 2013, 136, 273–281.

    Article  CAS  PubMed  Google Scholar 

  71. C. Panda, J. Debgupta, D. Díaz Díaz, K. K. Singh, S. Sen Gupta and B. B. Dhar, J. Am. Chem. Soc., 2014, 136, 12273–12282.

    Article  CAS  PubMed  Google Scholar 

  72. S. Pattanayak, D. R. Chowdhury, B. Garai, K. K. Singh, A. Paul, B. B. Dhar and S. S. Gupta, Chem.Eur. J., 2017, 23, 3414–3424.

    Article  CAS  PubMed  Google Scholar 

  73. A. A. Khandar, B. Shaabani, F. Belaj and A. Bakhtiari, Inorg. Chim. Acta, 2007, 360, 3255–3264.

    Article  CAS  Google Scholar 

  74. L. F. Lindoy, W. E. Moody and D. Taylor, Inorg. Chem., 1977, 16, 1962–1968.

    Article  CAS  Google Scholar 

  75. M. Sönmez, M. R. Bayram and M. Çelebı, J. Coord. Chem., 2009, 62, 2728–2735.

    Article  CAS  Google Scholar 

  76. T. Chen and C. Cai, Synth. Commun., 2015, 45, 1334–1341.

    Article  CAS  Google Scholar 

  77. K. Srinivasan, P. Michaud and J. K. Kochi, J. Am. Chem. Soc., 1986, 108, 2309–2320.

    Article  CAS  PubMed  Google Scholar 

  78. A. Sánchez-Méndez, J. M. Benito, E. de Jesús, F. J. de la Mata, J. C. Flores, R. Gómez and P. Gómez-Sal, Dalton Trans., 2006, 5379–5389.

  79. R. S. Drago and W. B. S. Company, Physical methods in chemistry, W.B. Saunders Company, Philadelphia, 1977.

  80. I. Bertini, P. Turano and A. J. Vila, Chem. Rev., 1993, 93, 2833–2932.

    Article  CAS  Google Scholar 

  81. E. Szajna, P. Dobrowolski, A. L. Fuller, A. M. Arif and L. M. Berreau, Inorg. Chem., 2004, 43, 3988–3997.

    Article  CAS  PubMed  Google Scholar 

  82. C. Belle, C. Bougault, M.-T. Averbuch, A. Durif, J.-L. Pierre, J.-M. Latour and L. Le Pape, J. Am. Chem. Soc., 2001, 123, 8053–8066.

    Article  CAS  PubMed  Google Scholar 

  83. R. C. Holz, E. A. Evdokimov and F. T. Gobena, Inorg. Chem., 1996, 35, 3808–3814.

    Article  CAS  PubMed  Google Scholar 

  84. A. B. Tossi and H. Görner, J. Photochem. Photobiol., B, 1993, 17, 115–125.

    Article  CAS  Google Scholar 

  85. K. Henbest, P. Douglas, M. S. Garley and A. Mills, J. Photochem. Photobiol., A, 1994, 80, 299–305.

    Article  CAS  Google Scholar 

  86. X. Zhou, F. Li, H. Li, B. Zhang, F. Yu and L. Sun, ChemSusChem, 2014, 7, 2453–2456.

    Article  CAS  PubMed  Google Scholar 

  87. J. J. Stracke and R. G. Finke, ACS Catal., 2014, 4, 909–933.

    Article  CAS  Google Scholar 

  88. G. Zhu, Y. V. Geletii, P. Kögerler, H. Schilder, J. Song, S. Lense, C. Zhao, K. I. Hardcastle, D. G. Musaev and C. L. Hill, Dalton Trans., 2012, 41, 2084–2090.

    Article  CAS  PubMed  Google Scholar 

  89. T. A. Betley, Q. Wu, T. Van Voorhis and D. G. Nocera, Inorg. Chem., 2008, 47, 1849–1861.

    Article  CAS  PubMed  Google Scholar 

  90. M. H. V. Huynh and T. J. Meyer, Chem. Rev., 2007, 107, 5004–5064.

    Article  CAS  PubMed  Google Scholar 

  91. J. J. Concepcion, J. W. Jurss, J. L. Templeton and T. J. Meyer, J. Am. Chem. Soc., 2008, 130, 16462–16463.

    Article  CAS  PubMed  Google Scholar 

  92. H.-W. Tseng, R. Zong, J. T. Muckerman and R. Thummel, Inorg. Chem., 2008, 47, 11763–11773.

    Article  CAS  PubMed  Google Scholar 

  93. Y. Han, Y. Wu, W. Lai and R. Cao, Inorg. Chem., 2015, 54, 5604–5613.

    Article  CAS  PubMed  Google Scholar 

  94. L. Wang, L. Duan, R. B. Ambre, Q. Daniel, H. Chen, J. Sun, B. Das, A. Thapper, J. Uhlig and P. Dinér, J. Catal., 2016, 335, 72–78.

    Article  CAS  Google Scholar 

  95. D. R. Weinberg, C. J. Gagliardi, J. F. Hull, C. F. Murphy, C. A. Kent, B. C. Westlake, A. Paul, D. H. Ess, D. G. McCafferty and T. J. Meyer, Chem. Rev., 2012, 112, 4016–4093.

    Article  CAS  PubMed  Google Scholar 

  96. D. W. Shaffer, Y. Xie and J. J. Concepcion, Chem. Soc. Rev., 2017, 46, 6170–6193.

    Article  CAS  PubMed  Google Scholar 

  97. M. Zhang, M.-T. Zhang, C. Hou, Z.-F. Ke and T.-B. Lu, Angew. Chem., Int. Ed., 2014, 53, 13042–13048.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis Verpoort.

Additional information

Electronic supplementary information (ESI) available: Characterization studies (1H and 13C NMR). See DOI: 10.1039/c9pp00254e

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asraf, M.A., Ezugwu, C.I., Zakaria, C.M. et al. Homogeneous photochemical water oxidation with metal salophen complexes in neutral media. Photochem Photobiol Sci 18, 2782–2791 (2019). https://doi.org/10.1039/c9pp00254e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00254e

Navigation