Skip to main content
Log in

Enhanced bioluminescent sensor for longitudinal detection of CREB activation in living cells

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) is associated with memory formation and controls cell survival and proliferation via regulation of downstream gene expression in tumorigenesis. As a transcription factor, CREB binds to cAMP response elements. Phosphorylation of CREB triggers transcriptional activation of CREB downstream genes following the interaction of the kinase-inducible domain (KID) of CREB with the KID interaction domain (KIX) of CREB-binding protein. Nevertheless, because of the lack of single-cell analytical techniques, little is known about spatiotemporal regulation of CREB phosphorylation. To analyze CREB activation in single living cells, we developed genetically encoded bioluminescent sensors using luciferase-fragment complementation: the sensors are designed based on KID–KIX interaction with a single-molecule format. The luminescence intensity of the sensor, designated as CREX (a sensor of CREB activation based on KID (CREB)–KIX interaction), increased by phosphorylation of CREB. Moreover, the luminescence intensity of CREX was sufficient to detect CREB activation in live-cell bioluminescence imaging for single-cell analysis because of the higher sensitivity. CREX sensor is expected to contribute to elucidation of the spatiotemporal regulation of CREB phosphorylation by applying single-cell analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. R. Montminy and L. M. Bilezikjian, Nature, 1987, 328, 175–178.

    Article  CAS  Google Scholar 

  2. E. Benito and A. Barco, Trends Neurosci., 2010, 33, 230–240.

    Article  CAS  Google Scholar 

  3. F. Lu, Y. Zheng, P. O. Donkor, P. Zou and P. Mu, Oncol. Res., 2016, 24, 171–179.

    Article  Google Scholar 

  4. A. Steven and B. Seliger, Oncotarget, 2016, 7, 35454–35465.

    Article  Google Scholar 

  5. A. Steven, M. Heiduk, C. V. Recktenwald, B. Hiebl, C. Wickenhauser, C. Massa and B. Seliger, Mol. Cancer Res., 2015, 13, 1248–1262.

    Article  CAS  Google Scholar 

  6. G. A. Gonzalez and M. R. Montminy, Cell, 1989, 59, 675–680.

    Article  CAS  Google Scholar 

  7. P. Sun, H. Enslen, P. S. Myung and R. A. Maurer, Genes Dev., 1994, 8, 2527–2539.

    Article  CAS  Google Scholar 

  8. J. Xing, D. D. Ginty and M. E. Greenberg, Science, 1996, 273, 959–963.

    Article  CAS  Google Scholar 

  9. M. Johannessen, M. P. Delghandi and U. Moens, Cell. Signalling, 2004, 16, 1211–1227.

    Article  CAS  Google Scholar 

  10. J. C. Chrivia, R. P. S. Kwok, N. Lamb, M. Hagiwara, M. R. Montminy and R. H. Goodman, Nature, 1993, 365, 855–859.

    Article  CAS  Google Scholar 

  11. D. Parker, K. Ferreri, T. Nakajima, V. J. LaMorte, R. Evans, S. C. Koerber, C. Hoeger and M. R. Montminy, Mol. Cell. Biol., 1996, 16, 694–703.

    Article  CAS  Google Scholar 

  12. B. M. Mayr, G. Canettieri and M. R. Montminy, Proc. Natl. Acad. Sci. U. S. A., 2001, 98, 10936–10941.

    CAS  Google Scholar 

  13. M. W. Friedrich, G. Aramuni, M. Mank, J. A. G. Mackinnon and O. Griesbeck, J. Biol. Chem., 2010, 285, 23285–23295.

    Article  CAS  Google Scholar 

  14. T. Ozawa, H. Yoshimura and S. B. Kim, Anal. Chem., 2013, 85, 590–609.

    Article  CAS  Google Scholar 

  15. T. Ishimoto, H. Mano, T. Ozawa and H. Mori, Bioconjugate Chem., 2012, 23, 923–932.

    Article  CAS  Google Scholar 

  16. H. Mano, T. Ishimoto, T. Okada, N. Toyooka and H. Mori, Biol. Pharm. Bull., 2014, 37, 1689–1693.

    Article  CAS  Google Scholar 

  17. T. Ishimoto, K. Azechi and H. Mori, Biol. Pharm. Bull., 2015, 38, 1969–1974.

    Article  CAS  Google Scholar 

  18. G. Merutka, W. Shalongo and E. Stellwagen, Biochemistry, 1991, 30, 4245–4248.

    Article  CAS  Google Scholar 

  19. M. Sato, Y. Ueda, T. Takagi and Y. Umezawa, Nat. Cell Biol., 2003, 5, 1016–1022.

    Article  CAS  Google Scholar 

  20. K. J. Herbst, M. D. Allen and J. Zhang, PLoS One, 2009, 4, e5642.

    Article  Google Scholar 

  21. M. D. Conkright, G. Canettieri, R. Screaton, E. Guzman, L. Miraglia, J. B. Hogenesch and M. Montminy, Mol. Cell, 2003, 12, 413–423.

    Article  CAS  Google Scholar 

  22. R. A. Screaton, M. D. Conkright, Y. Katoh, J. L. Best, G. Canettieri, S. Jeffries, E. Guzman, S. Niessen, J. R. Yates 3rd, H. Takemori, M. Okamoto and M. Montminy, Cell, 2004, 119, 61–74.

    Article  CAS  Google Scholar 

  23. C. Hollands, N. Bartolotti and O. Lazarov, Front. Neurosci., 2016, 10, 178.

    Article  Google Scholar 

  24. T. Ishimoto, H. Mano and H. Mori, Sci. Rep., 2015, 5, 9757.

    Article  CAS  Google Scholar 

  25. K. H. Lee, S. S. Byun, J. Y. Paik, S. Y. Lee, S. H. Song, Y. S. Choe and B. T. Kim, Nucl. Med. Commun., 2003, 24, 1003–1009.

    Article  CAS  Google Scholar 

  26. D. M. Mofford and S. C. Miller, ACS Chem. Neurosci., 2015, 6, 1273–1275.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeaki Ozawa.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c9pp00249a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noda, N., Ishimoto, T., Mori, H. et al. Enhanced bioluminescent sensor for longitudinal detection of CREB activation in living cells. Photochem Photobiol Sci 18, 2740–2747 (2019). https://doi.org/10.1039/c9pp00249a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00249a

Navigation