Skip to main content
Log in

Synthesis, spectroscopy and QM/MM simulations of a biomimetic ultrafast light-driven molecular motor

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A molecular motor potentially performing a continuous unidirectional rotation is studied by a multidisciplinary approach including organic synthesis, transient spectroscopy and excited state trajectory calculations. A stereogenic center was introduced in the N-alkylated indanylidene–pyrroline Schiff base framework of a previously investigated light-driven molecular switch in order to achieve the unidirectional C=C rotary motion typical of Feringa’s motor. Here we report that the specific substitution pattern of the designed chiral molecule must critically determine the unidirectional efficiency of the light-induced rotary motion. More specifically, we find that a stereogenic center containing a methyl group and a hydrogen atom as substituents does not create a differential steric effect large enough to fully direct the motion in either the clockwise or counterclockwise direction especially along the E → Z coordinate. However, due to the documented ultrafast character and electronic circular dichroism activity of the investigated system, we find that it provides the basis for development of a novel generation of rotary motors with a biomimetic framework and operating on a picosecond time scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. D. Roke, S. J. Wezenberg and B. L. Feringa, Proc. Natl. Acad. Sci. U. S. A., 2018, 115, 9423–9431.

    Article  CAS  Google Scholar 

  2. R. D. Astumian, Chem. Sci., 2017, 8, 840–845.

    Article  CAS  Google Scholar 

  3. S. Erbas-Cakmak, S. D. P. Fielden, U. Karaca, D. A. Leigh, C. T. McTernan, D. J. Tetlow and M. R. Wilson, Science, 2017, 358, 340–343.

    Article  CAS  Google Scholar 

  4. B. S. L. Collins, J. C. M. Kistemaker, E. Otten and B. L. Feringa, Nat. Chem., 2016, 8, 860.

    Google Scholar 

  5. C. R. Hall, J. Conyard, I. A. Heisler, G. Jones, J. Frost, W. R. Browne, B. L. Feringa and S. R. Meech, J. Am. Chem. Soc., 2017, 139, 7408–7414.

    Article  CAS  Google Scholar 

  6. J. C. M. Kistemaker, P. Štacko, J. Visser and B. L. Feringa, Nat. Chem., 2015, 7, 890.

    Article  CAS  Google Scholar 

  7. N. Koumura, R. W. J. Zijlstra, R. A. van Delden, N. Harada and B. L. Feringa, Nature, 1999, 401, 152–155.

    Article  CAS  Google Scholar 

  8. C. Schnedermann, X. Yang, M. Liebel, K. M. Spillane, J. Lugtenburg, I. Fernández, A. Valentini, I. Schapiro, M. Olivucci, P. Kukura and R. A. Mathies, Nat. Chem., 2018, 10, 449–455.

    Article  CAS  Google Scholar 

  9. M. Gueye, M. Manathunga, D. Agathangelou, Y. Orozco, M. Paolino, S. Fusi, S. Haacke, M. Olivucci and J. Léonard, Nat. Commun., 2018, 9, 313.

    Article  Google Scholar 

  10. I. Schapiro, S. Fusi, M. Olivucci, T. Andruniów, S. Sasidharanpillai and G. R. Loppnow, J. Phys. Chem. B, 2014, 118, 12243–12250.

    Article  CAS  Google Scholar 

  11. R. Rossi Paccani, D. Donati, S. Fusi, L. Latterini, G. Farina, V. Zanirato and M. Olivucci, J. Org. Chem., 2012, 77, 1738–1748.

    Article  CAS  Google Scholar 

  12. A. D. Dunkelberger, R. D. Kieda, J. Y. Shin, R. Rossi Paccani, S. Fusi, M. Olivucci and F. Fleming Crim, J. Phys. Chem. A, 2012, 116, 3527–3533.

    Article  CAS  Google Scholar 

  13. J. Briand, O. Braem, J. Rehault, J. Léonard, A. Cannizzo, M. Chergui, V. Zanirato, M. Olivucci, J. Helbing and S. Haacke, Phys. Chem. Chem. Phys., 2010, 12, 3178–3187.

    Article  CAS  Google Scholar 

  14. J. Léonard, I. Schapiro, J. Briand, S. Fusi, R. R. Paccani, M. Olivucci and S. Haacke, Chem. – Eur. J., 2012, 18, 15296–15304.

    Article  Google Scholar 

  15. K. Pagano, M. Paolino, S. Fusi, V. Zanirato, C. Trapella, G. Giuliani, A. Cappelli, S. Zanzoni, H. Molinari, L. Ragona and M. Olivucci, J. Phys. Chem. Lett., 2019, 10, 2235–2243.

    Article  CAS  Google Scholar 

  16. S. Gozem, F. Melaccio, H. L. Luk, S. Rinaldi and M. Olivucci, Chem. Soc. Rev., 2014, 43, 4019–4036.

    Article  CAS  Google Scholar 

  17. A. Nikiforov, J. A. Gamez, W. Thiel and M. Filatov, J. Phys. Chem. Lett., 2016, 7, 105–110.

    Article  CAS  Google Scholar 

  18. J. Wang and B. Durbeej, ChemistryOpen, 2018, 7, 583–589.

    Article  CAS  Google Scholar 

  19. V. Zanirato, G. P. Pollini, C. De Risi, F. Valente, A. Melloni, S. Fusi, J. Barbetti and M. Olivucci, Tetrahedron, 2007, 63, 4975–4982.

    Article  CAS  Google Scholar 

  20. G. Marchand, J. Eng, I. Schapiro, A. Valentini, L. M. Frutos, E. Pieri, M. Olivucci, J. Léonard and E. Gindensperger, J. Phys. Chem. Lett., 2015, 6, 599–604.

    Article  CAS  Google Scholar 

  21. E. Alcalde, N. Mesquida, S. López-Pérez, J. Frigola, R. Mercè, J. Holenz, M. Pujol and E. Hernández, Bioorg. Med. Chem., 2009, 17, 7387–7397.

    Article  CAS  Google Scholar 

  22. W. Wild, A. Seilmeier, N. H. Gottfried and W. Kaiser, Chem. Phys. Lett., 1985, 119, 259–263.

    Article  CAS  Google Scholar 

  23. T. Robl and A. Seilmeier, Chem. Phys. Lett., 1988, 147, 544–550.

    Article  Google Scholar 

  24. M. Gueye, M. Paolino, E. Gindensperger, S. Haacke, M. Olivucci and J. Léonard, Faraday Discuss., DOI: 10.1039/C9FD00062C.

  25. A. Muñoz Losa, I. F. Galván, M. E. Martín and M. A. Aguilar, J. Phys. Chem. B, 2006, 110, 18064–18071.

    Article  Google Scholar 

  26. M. E. Martín, A. M. Losa, I. F. Galván and M. A. Aguilar, J. Mol. Struct.: THEOCHEM, 2006, 775, 81–86.

    Article  Google Scholar 

  27. A. Melloni, R. Rossi Paccani, D. Donati, V. Zanirato, A. Sinicropi, M. L. Parisi, E. Martin, M. Ryazantsev, W. J. Ding, L. M. Frutos, R. Basosi, S. Fusi, L. Latterini, N. Ferré and M. Olivucci, J. Am. Chem. Soc., 2010, 132, 9310–9319.

    Article  CAS  Google Scholar 

  28. M. Klok, N. Boyle, M. T. Pryce, A. Meetsma, W. R. Browne and B. L. Feringa, J. Am. Chem. Soc., 2008, 130, 10484–10485.

    Article  CAS  Google Scholar 

  29. A. Gerwien, P. Mayer and H. Dube, J. Am. Chem. Soc., 2018, 140, 16442–16445.

  30. M. Paolino, M. Gueye, E. Pieri, M. Manathunga, S. Fusi, A. Cappelli, L. Latterini, D. Pannacci, M. Filatov, J. Léonard and M. Olivucci, J. Am. Chem. Soc., 2016, 138, 9807–9825.

    Article  CAS  Google Scholar 

  31. C. I. Bayly, P. Cieplak, W. Cornell and P. A. Kollman, J. Phys. Chem., 1993, 97, 10269–10280.

    Article  CAS  Google Scholar 

  32. W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell and P. A. Kollman, J. Am. Chem. Soc., 1995, 117, 5179–5197.

    Article  CAS  Google Scholar 

  33. I. F. Galván, M. L. Sánchez, M. E. Martín, F. J. O. del Valle and M. A. Aguilar, Comput. Phys. Commun., 2003, 155, 244–259.

    Article  Google Scholar 

  34. N. Ferré and J. G. Ángyán, Chem. Phys. Lett., 2002, 356, 331–339.

    Article  Google Scholar 

  35. F. Aquilante, L. De Vico, N. Ferré, G. Ghigo, P. Å. Malmqvist, P. Neogrády, T. B. Pedersen, M. PitoNák, M. Reiher, B. O. Roos, L. Serrano, M. Urban, V. Veryazov and R. Lindh, J. Comput. Chem., 2010, 31, 224–247.

    Article  CAS  Google Scholar 

  36. J. W. Ponder and F. M. Richards, J. Comput. Chem., 1987, 8, 1016–1024.

    Article  CAS  Google Scholar 

  37. F. Melaccio, M. Olivucci, R. Lindh and N. Ferré, Int. J. Quantum Chem., 2011, 111, 3339–3346.

    Article  CAS  Google Scholar 

  38. M. Manathunga, et al., J. Chem. Theory Comput., 2016, 12, 839–850.

    Article  CAS  Google Scholar 

  39. J. G. Ángyán, J. Math. Chem., 1992, 10, 93–137.

    Article  Google Scholar 

  40. A. Warshel and M. Levitt, J. Mol. Biol., 1976, 103, 227–249.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Olivucci.

Additional information

Dedicated to the memory of Professor Ugo Mazzucato of the University of Perugia, Italy.

Electronic supplementary information (ESI) available: Two trajectory movies (echiral.006.md.xyz and zchiral.004.md.xyz). See DOI: 10.1039/c9pp00223e

These authors have equally contributed to the research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schapiro, I., Gueye, M., Paolino, M. et al. Synthesis, spectroscopy and QM/MM simulations of a biomimetic ultrafast light-driven molecular motor. Photochem Photobiol Sci 18, 2259–2269 (2019). https://doi.org/10.1039/c9pp00223e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00223e

Navigation