Skip to main content

Advertisement

Log in

Photodynamic inactivation of S. aureus with a water-soluble curcumin salt and an application to cheese decontamination

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

In this study, the optimal parameters for the photodynamic inactivation (PDI) of Staphylococcus aureus in bacterial suspensions and in cheese were assessed using a water-soluble curcumin salt as the photosensitizer (PS). The in vitro study aimed at finding the optimal concentration and light dose to promote S. aureus photokilling. Four main groups were proposed: CONTROL (L−C−), LIGHT (L+C−), CUR (L−C+) and PDI (L+C+). A fixed light dose (LED, 450 ± 10 nm, 10 J cm−2) was applied using four different PS concentrations (0.75, 1.0, 1.5 and 3.0 mg mL−1). The dose also varied from 10–100 J cm−2 for a fixed concentration. High inactivation rates were observed for all light doses, with a maximum reduction of 7.58 log10at 100 J cm−2 (p ≪ 0.05). Saturation of the PDI effect was observed after a 10 minute illumination time, as well as a slight decrease in the S. aureus population for increasing illumination times in the L+C− group. As an application, the concentration showing the best decontamination performance in vitro (0.75 mg mL–1) was applied to decontaminate cheese in loco. PDI in two types of coalho cheese, a rennet-coagulated cheese commonly consumed in Brazil, was investigated. The results showed no significant inactivation in unpasteurized cheese, but a 4.34 log10 reduction for t > 5 min in pasteurized specimens. In conclusion, the present PDI-catalyzed curcumin photosensitizer inactivated S. aureus at statistically significant levels in vitro, in pasteurized cheese, but not in unpasteurized specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan and Q. Peng, Photodynamic therapy, J. Natl. Cancer Inst., 1998, 90, 889–905.

    Article  CAS  PubMed  Google Scholar 

  2. M. R. Hamblin and T. Hasan, Photodynamic therapy: a new antimicrobial approach to infectious disease?, Photochem. Photobiol. Sci., 2004, 3, 436–450.

    CAS  Google Scholar 

  3. F. Gad, T. Zahra, T. Hasan and M. R. Hamblin, Effects of growth phase and extracellular slime on photodynamic inactivation of Gram-positive pathogenic bacteria, Antimicrob. Agents Chemother., 2004, 48, 2173–2178.

    Article  CAS  Google Scholar 

  4. S. F. G. Vilela, J. C. Junqueira, J. O. Barbosa, M. Majewski, E. Munin and A. O. C. Jorge, Photodynamic inactivation of Staphylococcus aureus and Escherichia coli biofilms by malachite green and phenothiazine dyes: an in vitro study, Arch. Oral Biol., 2012, 57, 704–710.

    Article  CAS  Google Scholar 

  5. F. F. Sperandio, Y.-Y. Huang and M. R. Hamblin, Antimicrobial photodynamic therapy to kill Gram-negative bacteria, Recent Pat. Antiinfect. Drug Discov., 2013, 8, 108–120.

    CAS  Google Scholar 

  6. B. A. Temba, M. T. Fletcher, G. P. Fox, J. J. Harvey and Y. Sultanbawa, Inactivation of Aspergillus flavus spores by curcumin-mediated photosensitization, Food Control, 2016, 59, 708–713.

    Article  CAS  Google Scholar 

  7. L. M. Baltazar, A. Ray, D. A. Santos, P. S. Cisalpino, A. J. Friedman and J. D. Nosanchuk, Antimicrobial photodynamic therapy: an effective alternative approach to control fungal infections, Front. Microbiol., 2015, 6, 202.

    Google Scholar 

  8. F. Al-Asmari, R. Mereddy and Y. Sultanbawa, A novel photosensitization treatment for the inactivation of fungal spores and cells mediated by curcumin, J. Photochem. Photobiol., B, 2017, 173, 301–306.

    Article  CAS  Google Scholar 

  9. M. Wainwright, Photoinactivation of viruses, Photochem. Photobiol. Sci., 2004, 3, 406–411.

    Article  CAS  Google Scholar 

  10. N. M. Inada, M. M. da Costa, O. C. Guimarães, E. da Silva Ribeiro, C. Kurachi, S. M. Quintana, W. Lombardi and V. S. Bagnato, Photodiagnosis and treatment of condyloma acuminatum using 5-aminolevulinic acid and homemade devices, Photodiagn. Photodyn. Ther., 2012, 9, 60–68.

    CAS  Google Scholar 

  11. J. Wu, W. Hou, B. Cao, T. Zuo, C. Xue, A. W. Leung, C. Xu and Q.-J. Tang, Virucidal efficacy of treatment with photodynamically activated curcumin on murine norovirus bio-accumulated in oysters, Photodiagn. Photodyn. Ther., 2015, 12, 385–392.

    CAS  Google Scholar 

  12. A. P. D. Ribeiro, A. C. Pavarina, L. N. Dovigo, I. L. Brunetti, V. S. Bagnato, C. E. Vergani and C. A. de Souza Costa, Phototoxic effect of curcumin on methicillin-resistant Staphylococcus aureus and L929 fibroblasts, Lasers Med. Sci., 2013, 28, 391–398.

    Google Scholar 

  13. P. Soria-Lozano, Y. Gilaberte, M. Paz-Cristobal, L. Pérez- Artiaga, V. Lampaya-Pérez, J. Aporta, V. Pérez-Laguna, I. García-Luque, M. Revillo and A. Rezusta, In vitro effect photodynamic therapy with differents photosensitizers on cariogenic microorganisms, BMC Microbiol., 2015, 15, 187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. M. Wainwright, Photodynamic antimicrobial chemotherapy (PACT)., J. Antimicrob. Chemother., 1998, 42, 13–28.

    Article  CAS  PubMed  Google Scholar 

  15. N. S. Soukos, S. E. Mulholland, S. S. Socransky and A. G. Doukas, Photodestruction of human dental plaque bacteria: enhancement of the photodynamic effect by photomechanical waves in an oral biofilm model, Lasers Surg. Med., 2003, 33, 161–168.

    Google Scholar 

  16. E. F. de Oliveira, J. V. Tosati, R. V. Tikekar, A. R. Monteiro and N. Nitin, Antimicrobial activity of curcumin in combination with light against Escherichia coli O157: H7 and Listeria innocua: Applications for fresh produce sanitation, Postharvest. Biol. Technol., 2018, 137, 86–94.

    Google Scholar 

  17. J. V. Tosati, E. F. de Oliveira, J. V. Oliveira, N. Nitin and A. R. Monteiro, Light-activated antimicrobial activity of turmeric residue edible coatings against cross-contamination of Listeria innocua on sausages, Food Control, 2018, 84, 177–185.

    Article  CAS  Google Scholar 

  18. R. J. de Carvalho, G. T. de Souza, V. G. Honório, J. P. de Sousa, M. L. da Conceição, M. Maganani and E. L. de Souza, Comparative inhibitory effects of Thymus vulgaris L. essential oil against Staphylococcus aureus, Listeria monocytogenes and mesophilic starter co-culture in cheese-mimicking models, Food Microbiol., 2015, 52, 59–65.

    Article  PubMed  CAS  Google Scholar 

  19. J. Brooks, B. Martinez, J. Stratton, A. Bianchini, R. Krokstrom and R. Hutkins, Survey of raw milk cheeses for microbiological quality and prevalence of foodborne pathogens, Food Microbiol., 2012, 31, 154–158.

    Article  CAS  PubMed  Google Scholar 

  20. H. Cardoso, N. Silva, M. Sena and L. Carmo, Production of enterotoxins and toxic shock syndrome toxin by Staphylococcus aureus isolated from bovine mastitis in Brazil, Lett. Appl. Microbiol., 1999, 29, 347–349.

    CAS  Google Scholar 

  21. Y. Endo, T. Yamada, K. Matsunaga, Y. Hayakawa, T. Kaidoh and S. Takeuchi, Phage conversion of exfoliative toxin A in Staphylococcus aureus isolated from cows with mastitis, Vet. Microbiol., 2003, 96, 81–90.

    CAS  Google Scholar 

  22. L. Plano, Staphylococcus aureus exfoliative toxins: how they cause disease., J. Invest. Dermatol., 2004, 122, 1070–1077.

    Article  CAS  PubMed  Google Scholar 

  23. A. P. da Silva, D. J. Chiandrone, J. W. Tinta, C. Kurachi, N. M. Inada and V. S. Bagnato, Development and comparison of two devices for treatment of onychomycosis by photodynamic therapy, J. Biomed. Opt., 2015, 20, 061109.

    Google Scholar 

  24. T. A. Dahll, P. Bilski, K. J. Reszka and C. F. Chignell, Photocytotoxicity of curcumin, Photochem. Photobiol., 1994, 59, 290–294.

    Article  Google Scholar 

  25. T. Haukvik, E. Bruzell, S. Kristensen and H. Tønnesen, Photokilling of bacteria by curcumin in different aqueous preparations. Studies on curcumin and curcuminoids XXXVII, Pharmazie, 2009, 64, 666–673.

    CAS  PubMed  Google Scholar 

  26. D. Bonifácio, C. Martins, B. David, C. Lemos, M. Neves, A. Almeida, D. Pinto, M. Faustino and Â. Cunha, Photodynamic inactivation of Listeria innocua biofilms with food-grade photosensitizers: a curcumin-rich extract of Curcuma longa vs commercial curcumin, J. Appl. Microbiol., 2018, 125, 282–294.

    Article  PubMed  CAS  Google Scholar 

  27. G. Pileggi, J. C. Wataha, M. Girard, I. Grad, J. Schrenzel, N. Lange and S. Bouillaguet, Blue light-mediated inactivation of Enterococcus faecalis in vitro, Photodiagn. Photodyn. Ther., 2013, 10, 134–140.

    CAS  Google Scholar 

  28. M. A. Paschoal, C. C. Tonon, D. M. Spolidório, V. S. Bagnato, J. S. Giusti and L. Santos-Pinto, Photodynamic potential of curcumin and blue LED against Streptococcus mutans in a planktonic culture, Photodiagn. Photodyn. Ther., 2013, 10, 313–319.

    CAS  Google Scholar 

  29. S. Winter, N. Tortik, A. Kubin, B. Krammer and K. Plaetzer, Back to the roots: photodynamic inactivation of bacteria based on water-soluble curcumin bound to polyvinylpyrrolidone as a photosensitizer, Photochem. Photobiol. Sci., 2013, 12, 1795–1802.

    CAS  Google Scholar 

  30. F. G. Rego-Filho, M. T. de Araujo, K. T. de Oliveira and V. S. Bagnato, Validation of photodynamic action via photobleaching of a new curcumin-based composite with enhanced water solubility, J. Fluoresc., 2014, 24, 1407–1413.

    Article  CAS  PubMed  Google Scholar 

  31. P. P. Almeida, Í. S. Pereira, K. B. Rodrigues, L. S. Leal, A. S. Marques, L. P. Rosa, F. C. da Silva and R. A. A. da Silva, Photodynamic therapy controls of Staphylococcus aureus intradermal infection in mice, Lasers Med. Sci., 2017, 32, 1337–1342.

    Google Scholar 

  32. T. S. D. Araújo, P. L. F. Rodrigues, M. S. Santos, J. M. de Oliveira, L. P. Rosa, V. S. Bagnato, K. C. Blanco and F. C. da Silva, Reduced methicillin-resistant Staphylococcus aureus biofilm formation in bone cavities by photodynamic therapy, Photodiagn. Photodyn. Ther., 2018, 21, 219–223.

    Google Scholar 

  33. K. C. Blanco, N. M. Inada, F. M. Carbinatto and V. S. Bagnato, Antimicrobial Efficacy of Curcumin Formulations by Photodynamic Therapy, J. Pharm. Pharmacol., 2017, 5, 506–511.

    Google Scholar 

  34. M.-J. Kim, W. S. Bang and H.-G. Yuk, 405 ± 5 nm light emitting diode illumination causes photodynamic inactivation of Salmonella spp. on fresh-cut papaya without deterioration, Food Microbiol., 2017, 62, 124–132.

    Article  CAS  PubMed  Google Scholar 

  35. M.-J. Kim, C. H. Tang, W. S. Bang and H.-G. Yuk, Antibacterial effect of 405 ± 5 nm light emitting diode illumination against Escherichia coli O157: H7, Listeria monocytogenes, and Salmonella on the surface of fresh-cut mango and its influence on fruit quality, Int. J. Food Microbiol., 2017, 244, 82–89.

    Article  CAS  PubMed  Google Scholar 

  36. A. Kumar, V. Ghate, M.-J. Kim, W. Zhou, G. H. Khoo and H.-G. Yuk, Inactivation and changes in metabolic profile of selected foodborne bacteria by 460 nm LED illumination, Food Microbiol., 2017, 63, 12–21.

    Article  CAS  PubMed  Google Scholar 

  37. E. Bonin, A. Dos Santos, A. Fiori da Silva, L. Ribeiro, M. Favero, P. Campanerut-Sá, C. de Freitas, W. Caetano, N. Hioka and J. Mikcha, Photodynamic inactivation of foodborne bacteria by eosin Y, J. Appl. Microbiol., 2018, 124, 1617–1628.

    Article  CAS  PubMed  Google Scholar 

  38. C. B. Penha, E. Bonin, A. F. da Silva, N. Hioka, E. B. Zanqueta, T. U. Nakamura, B. A. de Abreu Filho, P. A. Z. Campanerut-Sá and J. M. G. Mikcha, Photodynamic inactivation of foodborne and food spoilage bacteria by curcumin, LWTFood Sci. Technol., 2017, 76, 198–202.

    CAS  Google Scholar 

  39. N. Tortik, A. Spaeth and K. Plaetzer, Photodynamic decontamination of foodstuff from Staphylococcus aureus based on novel formulations of curcumin, Photochem. Photobiol. Sci., 2014, 13, 1402–1409.

    CAS  Google Scholar 

  40. R. C. Ferraz, C. R. Fontana, A. P. De Ribeiro, F. Z. Trindade, F. H. Bartoloni, J. W. Baader, E. C. Lins, V. S. Bagnato and C. Kurachi, Chemiluminescence as a PDT light source for microbial control, J. Photochem. Photobiol., B, 2011, 103, 87–92.

    Article  CAS  Google Scholar 

  41. M. C. Andrade, A. P. D. Ribeiro, L. N. Dovigo, I. L. Brunetti, E. T. Giampaolo, V. S. Bagnato and A. C. Pavarina, Effect of different pre-irradiation times on curcumin-mediated photodynamic therapy against planktonic cultures and biofilms of Candida spp, Arch. Oral Biol., 2013, 58, 200–210.

    Article  CAS  Google Scholar 

  42. H. M. Wehr and J. F. Frank, Standard methods for the examination of dairy products, Ignatius Press, 2004.

  43. M. Kharat, Z. Du, G. Zhang and D. J. McClements, Physical and chemical stability of curcumin in aqueous solutions and emulsions: Impact of pH, temperature, and molecular environment, J. Agric. Food Chem., 2017, 65, 1525–1532.

    Article  CAS  PubMed  Google Scholar 

  44. T. A. Dahl, W. M. McGowan, M. A. Shand and V. S. Srinivasan, Photokilling of bacteria by the natural dye curcumin, Arch. Microbiol., 1989, 151, 183–185.

    CAS  Google Scholar 

  45. S. Bouhdid, J. Abrini, M. Amensour, A. Zhiri, M. Espuny and A. Manresa, Functional and ultrastructural changes in Pseudomonas aeruginosa and Staphylococcus aureus cells induced by Cinnamomum verum essential oil, J. Appl. Microbiol., 2010, 109, 1139–1149.

    Article  CAS  PubMed  Google Scholar 

  46. S. Bouhdid, J. Abrini, A. Zhiri, M. Espuny and A. Manresa, Investigation of functional and morphological changes in Pseudomonas aeruginosa and Staphylococcus aureus cells induced by Origanum compactum essential oil, J. Appl. Microbiol., 2009, 106, 1558–1568.

    Article  CAS  PubMed  Google Scholar 

  47. Z. Jackson, S. Meghji, A. MacRobert, B. Henderson and M. Wilson, Killing of the yeast and hyphal forms of Candida albicans using a light-activated antimicrobial agent, Lasers Med. Sci., 1999, 14, 150–157.

    Article  CAS  PubMed  Google Scholar 

  48. A. B. Hegge, T. T. Nielsen, K. L. Larsen, E. Bruzell and H. H. Tønnesen, Impact of curcumin supersaturation in antibacterial photodynamic therapy - effect of cyclodextrin type and amount: studies on curcumin and curcuminoides XLV, J. Pharm. Sci., 2012, 101, 1524–1537.

    Article  CAS  PubMed  Google Scholar 

  49. M. M. Gois, C. Kurachi, E. J. B. Santana, E. G. O. Mima, D. M. P. Spolidório, J. E. P. Pelino and V. S. Bagnato, Susceptibility of Staphylococcus aureus to porphyrin-mediated photodynamic antimicrobial chemotherapy: an in vitro study, Lasers Med. Sci., 2010, 25, 391–395.

    Article  PubMed  Google Scholar 

  50. P. Anand, A. B. Kunnumakkara, R. A. Newman and B. B. Aggarwal, Bioavailability of curcumin: problems and promises, Mol. Pharm., 2007, 4, 807–818.

    CAS  Google Scholar 

  51. S. C. Gupta, S. Prasad, J. H. Kim, S. Patchva, L. J. Webb, I. K. Priyadarsini and B. B. Aggarwal, Multitargeting by curcumin as revealed by molecular interaction studies, Nat. Prod. Rep., 2011, 28, 1937–1955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. A. Tapal and P. K. Tiku, Complexation of curcumin with soy protein isolate and its implications on solubility and stability of curcumin, Food Chem., 2012, 130, 960–965.

    Article  CAS  Google Scholar 

  53. P. Bourassa, J. Bariyanga and H. Tajmir-Riahi, Binding sites of resveratrol, genistein, and curcumin with milk α-and β-caseins, J. Phys. Chem. B, 2013, 117, 1287–1295.

    Article  CAS  PubMed  Google Scholar 

  54. S. R. Yazdi, F. Bonomi, S. Iametti, M. Miriani, A. Brutti and M. Corredig, Binding of curcumin to milk proteins increases after static high pressure treatment of skim milk, J. Dairy Res., 2013, 80, 152–158.

    Article  CAS  Google Scholar 

  55. A. N. Khanji, F. Michaux, J. Petit, D. Salameh, T. Rizk, J. Jasniewski and S. Banon, Structure, gelation, and antioxidant properties of curcumin-doped casein micelle powder produced by spray-drying, Food Funct., 2018, 9, 971–981.

    Article  CAS  PubMed  Google Scholar 

  56. A. Sahu, N. Kasoju and U. Bora, Fluorescence study of the curcumin- casein micelle complexation and its application as a drug nanocarrier to cancer cells, Biomacromolecules, 2008, 9, 2905–2912.

    Article  CAS  PubMed  Google Scholar 

  57. A. H. Sneharani, S. A. Singh and A. Appu Rao, Interaction of αS1-casein with curcumin and its biological implications, J. Agric. Food Chem., 2009, 57, 10386–10391.

    Article  CAS  PubMed  Google Scholar 

  58. Y.-J. Wang, M.-H. Pan, A.-L. Cheng, L.-I. Lin, Y.-S. Ho, C.-Y. Hsieh and J.-K. Lin, Stability of curcumin in buffer solutions and characterization of its degradation products, J. Pharm. Biomed. Anal., 1997, 15, 1867–1876.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco de Assis M. G. Rego Filho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira dos Santos, R., Campos, B.S., Filho, F.M.G.R. et al. Photodynamic inactivation of S. aureus with a water-soluble curcumin salt and an application to cheese decontamination. Photochem Photobiol Sci 18, 2707–2716 (2019). https://doi.org/10.1039/c9pp00196d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00196d

Navigation