Skip to main content
Log in

Photochemistry of tyrosine dimer: when an oxidative lesion of proteins is able to photoinduce further damage

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The tyrosine dimer (Tyr2), a covalent bond between two tyrosines (Tyr), is one of the most important modifications of the oxidative damage of proteins. This compound is increasingly used as a marker of aging, stress and pathogenesis. At physiological pH, Tyr2 is able to absorb radiation at wavelengths significantly present in the solar radiation and artificial sources of light. As a result, when Tyr2 is formed in vivo, a new chromophore appears in the proteins. Despite the biomedical importance of Tyr2, the information of its photochemical properties is limited due to the drawbacks of its synthesis. Therefore, in this work we demonstrate that at physiological pH, Tyr2 undergoes oxidation upon UV excitation yielding different products which conserve the dimeric structure. During its photodegradation different reactive oxygen species, like hydrogen peroxide, superoxide anion and singlet oxygen, are produced. Otherwise, we demonstrated that Tyr2 is able to sensitize the photodegradation of tyrosine. The results presented in this work confirm that Tyr2 can act as a potential photosensitizer, contributing to the harmful effects of UV-A radiation on biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

Absorbance

\(q_{{\rm{n,p}}}^{{\rm{a}},v}\) :

Absorbed photon flux density

Cyt:

Cytochrome c

D2O:

Deuterium water

DOPA:

3,4-Dihydroxy-L-phenylalanine

ESI:

Electrospray ionization source

I:

Emission intensities

ED:

Experimental-difference spectra

FL:

Fluorescence detector

HCOOH:

Formic acid

HPLC:

High-performance liquid chromatography

H2O2:

Hydrogen peroxide

\(q_{{\rm{n,p}}}^{{\rm{o}},v}\) :

Incident photon flux densitity

\(q_{{\rm{n,p}}}^{\rm{o}}\) :

Incident photons per time interval

NIR:

Near-infrared

Tyr2:

o,o′-Dityrosine or tyrosine dimer

PDA:

Photodiode array detector

Ptr:

Pterin

Φ−Tyr2:

Quantum yield of tyrosine dimer consumption

ROS:

Reactive oxygen species

tR:

Retention times

1O2:

Singlet oxygen

τΔ:

Singlet oxygen lifetime

SOSG:

Singlet oxygen sensor green

SOSG-EP:

Singlet oxygen sensor green endoperoxide

ΦΔ:

Singlet oxygen quantum yields

O2•−:

Superoxide anion radical

SOD:

Superoxide dismutase

Tyr(-H):

Tyrosyl radical

V:

Volume

References

  1. T. K. Dalsgaard, J. H. Nielsen, B. E. Brown, N. Stadler and M. J. Davies, J. Agric. Food Chem., 2011, 59, 7939–7947.

    Article  CAS  Google Scholar 

  2. G. Boguta and A. M. Dancewicz, Stud. Biophys., 1979, 73, 149–156.

    Google Scholar 

  3. G. Boguta and A. M. Dancewicz, Int. J. Radiat. Biol., 1981, 39, 163–174.

    CAS  Google Scholar 

  4. R. Amadò, R. Aeschbach and H. Neukom, Methods Enzymol., 1984, 107, 377–388.

    Article  Google Scholar 

  5. K. J. Davies, J. Biol. Chem., 1987, 262, 9895–9901.

    Article  CAS  Google Scholar 

  6. R. Kanwar and D. Balasubramanian, Exp. Eye Res., 1999, 68, 773–784.

    Article  CAS  Google Scholar 

  7. L. O. Reid, E. A. Roman, A. H. Thomas and M. L. Dántola, Biochemistry, 2016, 55, 4777–4786.

    Article  CAS  Google Scholar 

  8. D. Balasubramanian and R. Kanwar, Mol. Cell. Biochem., 2002, 234/235, 27–38.

  9. L. O. Reid, C. Castaño, M. L. Dántola, V. Lhiaubet-Vallet, M. A. Miranda, M. L. Marin and A. H. Thomas, Dyes Pigm., 2017, 147, 67–74.

    Article  CAS  Google Scholar 

  10. S. O. Andersen, Biochim. Biophys. Acta, 1963, 69, 249–262.

    Article  CAS  Google Scholar 

  11. D. A. Malencik, J. F. Sprouse, C. A. Swanson and S. R. Anderson, Anal. Biochem., 1966, 242, 202–213.

    Article  Google Scholar 

  12. M. Charlier and C. Hélène, Photochem. Photobiol., 1972, 15, 71–87.

    Article  CAS  Google Scholar 

  13. T. Delatour, T. Douki, C. D’Ham and J. Cadet, J. Photochem. Photobiol., B, 1998, 44, 191–198.

    Article  CAS  Google Scholar 

  14. J. Cadet, E. Sage and T. Douki, Mutat. Res., 2005, 571, 3–17.

    Article  CAS  Google Scholar 

  15. M. da Silva Baptista, J. Cadet, P. Di Mascio, A. A. Ghogare, A. Greer, M. R. Hamblin, C. Lorente, S. C. Nunez, M. S. Ribeiro, A. H. Thomas, M. Vignoni and T. M. Yoshimura, Photochem. Photobiol., 2017, 93(4), 912–919.

  16. D. I. Pattison, A. S. Rahmanto and M. Davies, Photochem. Photobiol. Sci., 2012, 11(1), 38–53.

  17. E. Silva and J. Godoy, Int. J. Vitam. Nutr. Res., 1994, 64, 253–256.

    CAS  PubMed  Google Scholar 

  18. C. Castaño, M. L. Dántola, E. Oliveros, A. H. Thomas and C. Lorente, Photochem. Photobiol., 2013, 89, 1448–1455.

    Article  Google Scholar 

  19. C. Castaño, E. Oliveros, A. H. Thomas and C. Lorente, J. Photochem. Photobiol., B, 2015, 153, 483–489.

    Article  Google Scholar 

  20. A. H. Thomas, M. P. Serrano, V. Rahal, P. Vicendo, C. Claparols, E. Oliveros and C. Lorente, Free Radical Biol. Med., 2013, 63, 467–475.

    Article  CAS  Google Scholar 

  21. S. E. Braslavsky, Pure Appl. Chem., 2007, 79, 293–465.

    Article  CAS  Google Scholar 

  22. H. J. Kuhn, S. E. Braslavsky and R. Schmidt, Pure Appl. Chem., 2004, 76, 2105–2146.

    Article  CAS  Google Scholar 

  23. C. C. Allain, L. S. Poon, C. S. G. Chan, W. Richmond and P. C. Fu, Clin. Chem., 1974, 20, 470–475.

    Article  CAS  Google Scholar 

  24. H. M. Flegg, Ann. Clin. Biochem., 1973, 10, 79–84.

    Article  CAS  Google Scholar 

  25. J. M. McCord and J. Fridovich, J. Biol. Chem., 1969, 244, 6049–6055.

    Article  CAS  Google Scholar 

  26. M. P. Serrano, C. Lorente, C. D. Borsarelli and A. H. Thomas, ChemPhysChem, 2015, 16(10), 2244–2252.

  27. A. Gollmer, J. Arnbjerg, F. H. Blaikie, B. W. Pedersen, T. Beitenbach, K. Daasbjerg, M. Glasius and P. R. Ogilby, Photochem. Photobiol., 2011, 87, 671–679.

    Article  CAS  Google Scholar 

  28. C. Flors, M. J. Fryer, J. Waring, B. Reeder, U. Bechtold, P. M. Mullineaux, S. Nonell, M. T. Wilson and N. R. Baker, J. Exp. Bot., 2006, 57, 1725–1734.

    Article  CAS  Google Scholar 

  29. D. Rodríguez Sartori, C. R. Lillo, J. J. Romero, M. L. Dell’Arciprete, A. Miñan, M. Fernández Lorenzo de Mele and M. C. González, Nanotechnology, 2016, 27, 475–486.

    Article  Google Scholar 

  30. C. Lorente and A. H. Thomas, Acc. Chem. Res., 2006, 39(6), 395–402.

  31. I. A. Vladimirov and N. I. Perrase, Biophysics, 1966, 11(4), 578–583.

  32. A. Ipiña, C. Castaño, M. L. Dántola and A. H. Thomas, Solar Energy, 2014, 109, 45–53.

    Article  Google Scholar 

  33. G. M. Robinson and M. R. Smyth, Analyst, 1997, 122, 797–802.

    Article  CAS  Google Scholar 

  34. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, New York, 2006, ch. 3.

  35. D. Creed, Photochem. Photobiol., 1984, 39(4), 563–575.

  36. J. L. Kerwin, J. Mass Spectrom., 1996, 31, 1429–1439.

    Article  CAS  Google Scholar 

  37. K. K. Chin, C. C. Trevithick-Sutton, J. McCallum, St. Jockusch, N. J. Turro, J. C. Scaiano, C. S. Foote and M. A. Garcia-Garibay, J. Am. Chem. Soc., 2008, 130, 6912–6913.

    Article  CAS  Google Scholar 

  38. B. H. J. Bielski, D. E. Cabelli, R. L. Arudi and A. B. Ross, J. Phys. Chem. Ref. Data, 1985, 14, 1041–1100.

    Article  CAS  Google Scholar 

  39. R. Kuciel and A. Mazurkiewicz, Biochem. Mol. Biol. Educ., 2004, 32, 183–186.

    Article  CAS  Google Scholar 

  40. S. Kim, M. Fujitsuka and T. Majima, J. Phys. Chem. B, 2013, 117(45), 13985–13992.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Laura Dántola.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c9pp00182d

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reid, L.O., Vignoni, M., Martins-Froment, N. et al. Photochemistry of tyrosine dimer: when an oxidative lesion of proteins is able to photoinduce further damage. Photochem Photobiol Sci 18, 1732–1741 (2019). https://doi.org/10.1039/c9pp00182d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00182d

Navigation