Skip to main content
Log in

Photo-controlled growth of polymeric submicronsized particles

  • Communication
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A tripodal coumarin derivative shows complex photoreactivity, changing from intra- to intermolecular photodimerization with increasing concentration. At high concentration, the compound undergoes efficient photopolymerization, resulting in the formation of polymeric submicron-sized particles. The size of these particles can be precisely increased through photoirradiation, without affecting their polydispersity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Notes and references

  1. T. Patel, J. B. Zhou, J. M. Peipmeier and W. M. Saltzman, Polymeric nanoparticles for drug delivery to the central nervous system, Adv. Drug Delivery Rev., 2012, 64, 701–705.

    Article  CAS  Google Scholar 

  2. N. Kamaly, B. Yameen, J. Wu and O. C. Farokhzad, Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release, Chem. Rev., 2016, 116, 2602–2663.

    Article  CAS  Google Scholar 

  3. X. Xing, Q. Zeng, M. Vagin, M. Fahlman and F. L. Zhang, Fast switching polymeric electrochromics with facile processed water dispersed nanoparticles, Nano Energy, 2018, 47, 123–129.

    Article  CAS  Google Scholar 

  4. C. K. Lim, J. Shin, Y. D. Lee, J. Kim, K. S. Oh, S. H. Yuk, S. Y. Jeong, I. C. Kwon and S. Kim, Phthalocyanine-aggregated polymeric nanoparticles as tumor-homing near-infrared absorbers for photothermal therapy of cancer, Theranostics, 2012, 2, 871–879.

    Article  CAS  Google Scholar 

  5. M. A. J. Gillissen, I. K. Voets, E. W. Meijer and A. R. A. Palmans, Single chain polymeric nanoparticles as compartmentalised sensors for metal ions, Polym. Chem., 2012, 3, 3166–3174.

    Article  CAS  Google Scholar 

  6. V. Jain and P. V. Bharatam, Pharmacoinformatic approaches to understand complexation of dendrimeric nanoparticles with drugs, Nanoscale, 2014, 6, 2476–2501.

    Article  CAS  Google Scholar 

  7. C. I. C. Crucho, Stimuli-Responsive Polymeric Nanoparticles for Nanomedicine, ChemMedChem, 2015, 10, 24–38.

    Article  CAS  Google Scholar 

  8. C. I. C. Crucho and M. T. Barros, Polymeric nanoparticles: A study on the preparation variables and characterization methods, Mater. Sci. Eng., C, 2017, 80, 771–784.

    Article  CAS  Google Scholar 

  9. M. Kalomiraki, K. Thermos and N. A. Chaniotakis, Dendrimers as tunable vectors of drug delivery systems and biomedical and ocular applications, Int. J. Nanomed., 2016, 11, 1–12.

    Article  CAS  Google Scholar 

  10. A. B. Jindal, The effect of particle shape on cellular interaction and drug delivery applications of micro- and nanoparticles, Int. J. Pharm., 2017, 532, 450–465.

    Article  CAS  Google Scholar 

  11. A. S. Gupta, Role of particle size, shape, and stiffness in design of intravascular drug delivery systems: insights from computations, experiments, and nature, WIREs Nanomed. Nanobiotechnol., 2016, 8, 255–270.

    Article  Google Scholar 

  12. K. Tanaka, Supramolecular Photodimerization of Coumarins, Molecules, 2012, 17, 1408–1418.

    Article  CAS  Google Scholar 

  13. J. He, L. Tremblay, S. Lacelle and Y. Zhao, Preparation of polymer single chain nanoparticles using intramolecular photodimerization of coumarin, Soft Matter, 2011, 7, 2380–2386.

    Article  CAS  Google Scholar 

  14. J. Ling, M. Z. Rong and M. Q. Zhang, Photo-stimulated self-healing polyurethane containing dihydroxyl coumarin derivatives, Polymer, 2012, 53, 2691–2698.

    Article  CAS  Google Scholar 

  15. J. S. Seixas de Melo, R. S. Becker and A. L. Maçanita, Photophysical Behavior of Coumarins as a Function of Substitution and Solvent: Experimental Evidence for the Existence of a Lowest Lying (n,pi*) State, J. Phys. Chem., 1994, 98, 6054–6058.

    Article  CAS  Google Scholar 

  16. M. Taniguchi and J. S. Lindsey, Database of Absorption and Fluorescence Spectra of >300 Common Compounds for use in PhotochemCAD, Photochem. Photobiol., 2018, 94, 290–327.

    Article  CAS  Google Scholar 

  17. R. Hoffman, P. Wells and H. Morrison, Organic photochemistry. XII. Further studies on the mechanism of coumarin photodimerization, observation of an unusual “heavy atom” effect, J. Org. Chem., 1971, 36, 102–108.

    Article  CAS  Google Scholar 

  18. H. Bouas-Laurent, A. Castellan, J. P. Desvergne and R. Lapouyade, Photodimerization of anthracenes in fluid solutions: (part 2) mechanistic aspects of the photocycloaddition and of the photochemical and thermal cleavage, Chem. Soc. Rev., 2001, 30, 248–263.

    Article  CAS  Google Scholar 

  19. M. J. Masarudin, S. M. Cutts, B. J. Evison, D. R. Phillips and P. J. Pigram, Factors determining the stability, size distribution, and cellular accumulation of small, monodisperse chitosan nanoparticles as candidate vectors for anticancer drug delivery: application to the passive encapsulation of [14C]-doxorubicin, Nanotechnol., Sci. Appl., 2015, 8, 67–80.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Avó.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c9pp00086k

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avó, J., Lima, J.C. & Jorge Parola, A. Photo-controlled growth of polymeric submicronsized particles. Photochem Photobiol Sci 18, 993–996 (2019). https://doi.org/10.1039/c9pp00086k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00086k

Navigation