Skip to main content
Log in

Photochromic rotaxanes and pseudorotaxanes

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Among stimulus-responsive molecular ring-on-thread rotaxanes and pseudorotaxanes, variants incorporating photochromic sub-units are attracting considerable attention as their properties and structure can be remotely and precisely controlled, additionally without producing chemical waste. The focus herein is on photoswitching-driven assembly/disassembly and modulation of properties resulting from light-activated isomerization or changes in electronic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. V. Balzani, G. A. Ozin and A. C. Arsenault, Nanochemistry: A Chemical Approach to Nanomaterials, Small, 2006, 2 ,678–679.

    Article  CAS  Google Scholar 

  2. P. D. Beer, P. A. Gale and D. K. Smith, Supramolecular chemistry, University Press, Oxford, 2003.

    Google Scholar 

  3. S. Erbas-Cakmak, D. A. Leigh, C. T. McTernan and A. L. Nussbaumer, Artificial Molecular Machines, Chem. Rev., 2015, 115, 10081–10206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. J.-M. Lehn, Supramolecular Chemistry : Concepts and Perspectives, John Wiley & Sons, Hoboken, 2011.

    Google Scholar 

  5. W. Yang, Y. Li, H. Liu, L. Chi and Y. Li, Design and assembly of rotaxane-based molecular switches and machines, Small, 2012, 8, 504–516.

    Article  CAS  PubMed  Google Scholar 

  6. D. B. Amabilino and J. F. Stoddart, Interlocked and Intertwined Structures and Superstructures, Chem. Rev., 1995, 95, 2725–2828.

    Article  CAS  Google Scholar 

  7. V. Balzani and A. Credi, Artificial molecular-level machines, Chem. Rec., 2001, 1, 422–435.

    Article  CAS  PubMed  Google Scholar 

  8. J. E. Beves, B. A. Blight, C. J. Campbell, D. A. Leigh and R. T. McBurney, Strategies and Tactics for the Metal-Directed Synthesis of Rotaxanes, Knots, Catenanes, and Higher Order Links, Angew. Chem., Int. Ed., 2011, 50, 9260–9327.

    Article  CAS  Google Scholar 

  9. H. Musso, Catenanes, Rotaxanes and Knots, Angew. Chem., 1972, 84, 270–270.

    Article  Google Scholar 

  10. J.-P. Sauvage, Transition Metal-Containing Rotaxanes and Catenanes in Motion: Toward Molecular Machines and Motors, Acc. Chem. Res., 1998, 31, 611–619.

    Article  CAS  Google Scholar 

  11. S. F. M. van Dongen, S. Cantekin, J. A. A. W. Elemans, A. E. Rowan and R. J. M. Nolte, Functional interlocked systems, Chem. Soc. Rev., 2014, 43, 99–122.

    Article  PubMed  Google Scholar 

  12. M. Xue, Y. Yang, X. Chi, X. Yan and F. Huang, Development of Pseudorotaxanes and Rotaxanes: From Synthesis to Stimuli-Responsive Motions to Applications, Chem. Rev., 2015, 115, 7398–7501.

    Article  CAS  PubMed  Google Scholar 

  13. H. Tian and Q. C. Wang, Recent progress on switchable rotaxanes, Chem. Soc. Rev., 2006, 35, 361–374.

    Article  CAS  PubMed  Google Scholar 

  14. Z. W. Yang, X. R. Liu, S. S. Zhao and J. M. He, Chemically Driven [2]Rotaxane Molecular Shuttles, Prog. Chem., 2014, 26, 1899–1913.

    CAS  Google Scholar 

  15. Y. B. Zheng, Q. Hao, Y.-W. Yang, B. Kiraly, I.-K. Chiang and T. J. Huang, Light-driven artificial molecular machines, J. Nanophotonics, 2010, 4, 6.

    Article  CAS  Google Scholar 

  16. D. H. Qu, Q. C. Wang, Q. W. Zhang, X. Ma and H. Tian, Photoresponsive Host-Guest Functional Systems, Chem. Rev., 2015, 115, 7543–7588.

    Article  CAS  PubMed  Google Scholar 

  17. G. Yu, C. Han, Z. Zhang, J. Chen, X. Yan, B. Zheng, S. Liu and F. Huang, Pillar[6]arene-based photoresponsive host-guest complexation, J. Am. Chem. Soc., 2012, 134, 8711–8717.

    Article  CAS  PubMed  Google Scholar 

  18. M. R. Craig, T. D. W. Claridge, H. L. Anderson and M. G. Hutchings, Synthesis of a cyclodextrin azo dye [3] rotaxane as a single isomer, Chem. Commun., 1999, 1537–1538.

    Google Scholar 

  19. P. Bortolus and S. Monti, cis .dblharw. trans Photoisomerization of azobenzene-cyclodextrin inclusion complexes, J. Phys. Chem., 1987, 91, 5046–5050.

    Article  CAS  Google Scholar 

  20. L. M. Klivansky, G. Koshkakaryan, D. Cao and Y. Liu, Linear π-Acceptor-Templated Dynamic Clipping to Macrobicycles and [2]Rotaxanes, Angew. Chem., Int. Ed., 2009, 48, 4185–4189.

    Article  CAS  Google Scholar 

  21. J. D. Crowley, S. M. Goldup, A.-L. Lee, D. A. Leigh and R. T. McBurney, Active metal template synthesis of rotaxanes, catenanes and molecular shuttles, Chem. Soc. Rev., 2009, 38, 1530–1541.

    Article  CAS  PubMed  Google Scholar 

  22. P. R. Ashton, I. Baxter, M. C. T. Fyfe, F. M. Raymo, N. Spencer, J. F. Stoddart, A. J. P. White and D. J. Williams, Rotaxane or Pseudorotaxane? That Is the Question!, J. Am. Chem. Soc, 1998, 120, 2297–2307.

    Article  CAS  Google Scholar 

  23. G.-L. Marcos, A. P. Jon and J. F. Stoddart, The art and science of self-assembling molecular machines, Nanotechnology, 1996, 7, 183.

    Article  Google Scholar 

  24. Y. Tachibana, N. Kihara, Y. Furusho and T Takata, Is the tert-Butyl Group Bulky Enough to End-Cap a Pseudorotaxane with a 24-Crown-8-ether Wheel?, Org. Lett, 2004, 6, 4507–4509.

    Article  CAS  PubMed  Google Scholar 

  25. K. Nakazono, S. Kuwata and T Takata, Crown ether-tertammonium salt complex fixed as rotaxane and its derivation to nonionic rotaxane, Tetrahedron Lett., 2008, 49, 2397–2401.

    Article  CAS  Google Scholar 

  26. N. H. Evans and P. D. Beer, A Janus [2]Rotaxane Synthesized by Using an Anion-Templated Clipping Methodology, Chem. -Eur. J., 2011, 17, 10542–10546.

    Article  CAS  PubMed  Google Scholar 

  27. V. Aucagne, K. D. Hänni, D. A. Leigh, P. J. Lusby and D. B. Walker, Catalytic “Click” Rotaxanes: A Substoichiometric Metal-Template Pathway to Mechanically Interlocked Architectures, J. Am. Chem. Soc, 2006, 128, 2186–2187.

    Article  CAS  PubMed  Google Scholar 

  28. J. Berná, S. M. Goldup, A.-L. Lee, D. A. Leigh, M. D. Symes, G. Teobaldi and F. Zerbetto, Cadiot-Chodkiewicz Active Template Synthesis of Rotaxanes and Switchable Molecular Shuttles with Weak Intercomponent Interactions, Angew. Chem., Int. Ed., 2008, 47, 4392–4396.

    Article  CAS  Google Scholar 

  29. A. Tron, P. J. Thornton, C. Lincheneau, J.-P. Desvergne, N. Spencer, J. H. R. Tucker and N. D. McClenaghan, Reversible Photocapture of a [2]Rotaxane Harnessing a Barbiturate Template, J. Org. Chem., 2015, 80, 988–996.

    Article  CAS  PubMed  Google Scholar 

  30. A. Tron, H.-P. Jacquot de Rouville, A. Ducrot, J. H. R. Tucker, M. Baroncini, A. Credi and N. D. McClenaghan, Photodriven [2]rotaxane–[2]catenane interconversion, Chem. Commun., 2015, 51, 2810–2813.

    Article  CAS  Google Scholar 

  31. S. Silvi, M. Venturi and A. Credi, Light operated molecular machines, Chem. Commun., 2011, 47, 2483–2489.

    Article  CAS  Google Scholar 

  32. T Zhang, L. Mu, G. She and W. Shi, Light-driven molecular shuttles modified on silicon nanowires, Chem. Commun., 2012, 48, 452–454.

    Article  CAS  Google Scholar 

  33. V. Balzani, M. Clemente-León, A. Credi, B. Ferrer, M. Venturi, A. H. Flood and J. F. Stoddart, Autonomous artificial nanomotor powered by sunlight, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 1178–1183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. G. Ragazzon, M. Baroncini, S. Silvi, M. Venturi and A. Credi, Light-powered autonomous and directional molecular motion of a dissipative self-assembling system, Nat. Nanotechnol., 2014, 10, 70.

    Article  PubMed  CAS  Google Scholar 

  35. H. Murakami, A. Kawabuchi, K. Kotoo, M. Kunitake and N. Nakashima, A Light-Driven Molecular Shuttle Based on a Rotaxane, J. Am. Chem. Soc, 1997, 119, 7605–7606.

    Article  CAS  Google Scholar 

  36. H. Meier, The Photochemistry of Stilbenoid Compounds and Their Role in Materials Technology, Angew. Chem., Int. Ed. Engl., 1992, 31, 1399–1420.

    Article  Google Scholar 

  37. H. Meier, Blue Fluorescent Exciplexes Consisting of trans-Stilbene and Antibodies, Angew. Chem., Int. Ed., 2001, 40 ,1851–1853.

    Article  Google Scholar 

  38. C. A. Stanier, S. J. Alderman, T. D. W. Claridge and H. L. Anderson, Unidirectional Photoinduced Shuttling in a Rotaxane with a Symmetric Stilbene Dumbbell, Angew. Chem., Int. Ed., 2002, 41, 1769–1772.

    Article  Google Scholar 

  39. D.-H. Qu, Q.-C. Wang and H. Tian, A Half Adder Based on a Photochemically Driven [2]Rotaxane, Angew. Chem., Int. Ed., 2005, 44, 5296–5299.

    Article  CAS  Google Scholar 

  40. W. Zhou, D. Chen, J. Li, J. Xu, J. Lv, H. Liu and Y. Li, Photoisomerization of Spiropyran for Driving a Molecular Shuttle, Org. Lett., 2007, 9, 3929–3932.

    Article  CAS  PubMed  Google Scholar 

  41. A. Altieri, G. Bottari, F. Dehez, D. A. Leigh, J. K. Wong and F. Zerbetto, Remarkable positional discrimination in bistable light- and heat-switchable hydrogen-bonded molecular shuttles, Angew. Chem., Int. Ed., 2003, 42, 2296–2300.

    Article  CAS  Google Scholar 

  42. V. Blanco, A. Carlone, K. D. Hänni, D. A. Leigh and B. Lewandowski, A Rotaxane-Based Switchable Organocatalyst, Angew. Chem., Int. Ed., 2012, 51, 5166–5169.

    Article  CAS  Google Scholar 

  43. A. Martinez-Cuezva, A. Saura-Sanmartin, T. Nicolas-Garcia, C. Navarro, R. A. Orenes, M. Alajarin and J. Berna, Photoswitchable interlocked thiodiglycolamide as a cocatalyst of a chalcogeno-Baylis-Hillman reaction, Chem. Sci., 2017, 8, 3775–3780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Y. Li, H. Li, Y. Li, H. Liu, S. Wang, X. He, N. Wang and D. Zhu, Energy Transfer Switching in a Bistable Molecular Machine, Org. Lett., 2005, 7, 4835–4838.

    Article  CAS  PubMed  Google Scholar 

  45. W. Abraham, K. Buck, M. Orda-Zgadzaj, S. Schmidt-Schäffer and U.-W. Grummt, Novel photoswitchable rotaxanes, Chem. Commun., 2007, 3094–3096.

    Google Scholar 

  46. T.-G. Zhan, H.-H. Yin, S.-T. Zheng, W.-C. Lin, N.-L. Shen, J. Cui, L.-C. Kong, L.-J. Liu and K.-D. Zhang, Toward bidirectional photoswitchable colored photochromic molecules with visible light stability, Chem. Commun., 2018, 54, 9356–9359.

    Article  CAS  Google Scholar 

  47. K. Hirose, Y. Shiba, K. Ishibashi, Y. Doi and Y. Tobe, An Anthracene-Based Photochromic Macrocycle as a Key Ring Component To Switch a Frequency of Threading Motion, Chem. – Eur. J., 2008, 14, 981–986.

    Article  CAS  PubMed  Google Scholar 

  48. F. Hu, J. Huang, M. Cao, Z. Chen, Y.-W. Yang, S. H. Liu and J. Yin, Dithienylethene-based rotaxanes: synthesis, characterization and properties, Org. Biomol. Chem., 2014, 12 ,7712–7720.

    Article  CAS  Google Scholar 

  49. M. A. Romero, R. J. Fernandes, A. J. Moro, N. Basílio and U. Pischel, Light-induced cargo release from a cucurbit[8] uril host by means of a sequential logic operation, Chem. Commun., 2018, 54, 13335–13338.

    Article  CAS  Google Scholar 

  50. E. A. Shilova, V. P. Perevalov, V. V. Suslov and C. Moustrou, Synthesis of new [2]rotaxane including a macrocyclic receptor and a photochromic unit, Tetrahedron Lett., 2008, 49, 3453–3457.

    Article  CAS  Google Scholar 

  51. H. Zhang, X.-X. Kou, Q. Zhang, D.-H. Qu and H. Tian, Altering intercomponent interactions in a photochromic multi-state [2]rotaxane, Org. Biomol. Chem., 2011, 9, 4051–4056.

    Article  CAS  PubMed  Google Scholar 

  52. L. Scarpantonio, A. Tron, C. Destribats, P. Godard and N. D. McClenaghan, Concatenation of reversible electronic energy transfer and photoinduced electron transfer to control a molecular piston, Chem. Commun., 2012, 48, 3981–3983.

    Article  CAS  Google Scholar 

  53. S. A. Denisov, S. Yu, J. L. Pozzo, G. Jonusauskas and N. D. McClenaghan, Harnessing Reversible Electronic Energy Transfer: From Molecular Dyads to Molecular Machines, ChemPhysChem, 2016, 17, 1794–1804.

    Article  CAS  PubMed  Google Scholar 

  54. A. Tron, I. Pianet, A. Martinez-Cuezva, J. H. R. Tucker, L. Pisciottani, M. Alajarin, J. Berna and N. D. McClenaghan, Remote Photoregulated Ring Gliding in a [2]Rotaxane via a Molecular Effector, Org. Lett., 2017, 19 ,154–157.

    Article  CAS  Google Scholar 

  55. M. Lohse, K. Nowosinski, N. L. Traulsen, A. J. Achazi, L. K. S. von Krbek, B. Paulus, C. A. Schalley and S. Hecht, Gating the photochromism of an azobenzene by strong host–guest interactions in a divalent pseudo[2]rotaxane, Chem. Commun., 2015, 51, 9777–9780.

    Article  CAS  Google Scholar 

  56. T.-G. Zhan, M.-Y. Yun, J.-L. Lin, X.-Y. Yu and K.-D. Zhang, Dual absorption spectral changes by light-triggered shuttling in bistable [2]rotaxanes with non-destructive readout, Chem. Commun., 2016, 52, 14085–14088.

    Article  CAS  Google Scholar 

  57. P. H. Kwan and T. M. Swager, Intramolecular Photoinduced Charge Transfer in Rotaxanes, J. Am. Chem. Soc., 2005, 127, 5902–5909.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Luc Pozzo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, S., McClenaghan, N.D. & Pozzo, JL. Photochromic rotaxanes and pseudorotaxanes. Photochem Photobiol Sci 18, 2102–2111 (2019). https://doi.org/10.1039/c9pp00057g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00057g

Navigation