Skip to main content
Log in

Femtosecond laser in refractive corneal surgery

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The introduction of the femtosecond (fs) laser has revolutionized ophthalmic surgery. With the worldwide application of fs-lasers, clinical outcomes and safety in corneal procedures have improved significantly and they have become an ideal tool for ultra-precise corneal refractive surgery. Flap creation in laser in situ keratomileusis (LASIK) is the most common use of this laser. It can also be used for other corneal refractive procedures including channel creation for the insertion of intrastromal corneal ring segments (ICRS), performing astigmatic keratotomies (AK), femtosecond lenticule extraction including small incision lenticule extraction (SMILE), and the insertion of corneal inlays. This article summarizes recent advanced applications of fs laser technology in corneal refractive surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. H. Maiman, Simulated optic radiation in ruby, Nature, 1960, 187, 493–494.

    Article  Google Scholar 

  2. H. K. Soong and J. B. Malta, Femtosecond Lasers in Ophthalmology, Am. J. Ophthalmol., 2009, 147(2), 189–197.

    Article  PubMed  Google Scholar 

  3. D. Stern, R. W. Schoenlein, C. A. Puliafito, et al., Corneal ablation by nanosecond, picosecond, and femtosecond lasers at 532 and 625 nm, Arch. Ophthalmol., 1989, 107, 587–592.

    Article  CAS  PubMed  Google Scholar 

  4. M. D. Perry and G. Mourou, Terrawatt to petawatt class subpico- second lasers, Science, 1994, 264, 917.

    Article  CAS  PubMed  Google Scholar 

  5. J. B. Jonas and U. Vossmerbäumer, Femtosecond laser penetrating keratoplasty with conical incisions and positional spikes, J. Refractive Surg., 2004, 20, 397.

    Article  Google Scholar 

  6. M. Q. Salomao and S. E. Wilson, Femtosecond laser in laser in situ keratomileusis, J. Cataract Refractive Surg., 2010, 36, 1024–1032.

    Article  Google Scholar 

  7. P. Kim, G. L. Sutton and D. S. Rootman, Applications of the femtosecond laser in corneal refractive surgery, Curr. Opin. Ophthalmol., 2011, 22(4), 238–244.

    Article  PubMed  Google Scholar 

  8. J. H. Talamo, J. Meltzer and J. Gardner, Reproducibility of flap thickness with IntraLaser FS and Moria LSK-1 and M2 microkeratomes, J. Refractive Surg., 2006, 22, 556–561.

    Article  Google Scholar 

  9. K. G. Stonecipher, T. S. Ignacio and M. Stonecipher, Advances in refractive surgery: microkeratome and femtosecond laser flap creation in relation to safety, efficacy, predictability, and biomechanical stability, Curr. Opin. Ophthalmol., 2006, 17, 368–372.

    Article  PubMed  Google Scholar 

  10. M. Q. Salomao, R. J. Ambrosio and S. E. Wilson, Dry eye associated with laser in situ keratomileusis: mechanical microkeratome versus femtosecond laser, J. Cataract Refractive Surg., 2009, 35, 1756–1760.

    Article  Google Scholar 

  11. M. A. Torky, Y. A. Al Zafiri, A. M. Khattab, R. K. Farag and E. A. Awad, Visumax femtolasik versus Moria M2 microkeratome in mild to moderate myopia: efficacy, safety, predictability, aberrometric changes and flap thickness predictability, BMC Ophthalmol., 2017, 17(1), 125.

  12. L. K. Xia, J. Yu, G. R. Chai, D. Wang and Y. Li, Comparison of the femtosecond laser and mechanical microkeratome for flap cutting in LASIK, Int. J. Ophthalmol., 2015, 8(4), 784–790.

    PubMed  PubMed Central  Google Scholar 

  13. Y. Zhou, L. Tian, N. Wang and P. J. Dougherty, Anterior segment optical coherence tomography measurement of LASIK flaps: femtosecond laser vs microkeratome, J. Refractive Surg., 2010.

  14. S. Moussa, A. K. Dexl, E. M. Krall, E. M. Arlt, G. Grabner and J. Ruckhofer, Visual, aberrometric, photic phenomena, and patient satisfaction after myopic wavefront-guided LASIK using a high-resolution aberrometer, Clin. Ophthalmol., 2016, 10, 2489–2496.

    Article  PubMed  PubMed Central  Google Scholar 

  15. M. R. Santhiago, N. Kara-Junior and G. O. Waring 4th, Microkeratome versus femtosecond flaps: accuracy and complications, Curr. Opin. Ophthalmol., 2014, 25(4), 270–274.

    Article  PubMed  Google Scholar 

  16. W. Sekundo, K. S. Kunert and M. Blum, Small incision corneal refractive surgery using the small incision lenticule extraction (SMILE) procedure for the correction of myopia and myopic astigmatism: results of a 6 month prospective study, Br. J. Ophthalmol., 2011, 95(3), 335–339.

    Article  PubMed  Google Scholar 

  17. R. Shah, S. Shah and S. Sengupta, Results of small incision lenticule extraction: All-in-one femtosecond laser refractive surgery, J. Cataract Refractive Surg., 2011, 37(1), 127–137.

    Article  Google Scholar 

  18. A. Ivarsen, S. Asp and J. Hjortdal, Safety and complications of more than 1500 small-incision lenticule extraction procedures, Ophthalmology, 2014, 121(4), 822–828.

    Article  PubMed  Google Scholar 

  19. F. Lin, Y. Xu and Y. Yang, Comparison of the visual results after SMILE and femtosecond laser-assisted LASIK for myopia, J. Refractive Surg., 2014, 30(4), 248–254.

    Article  Google Scholar 

  20. D. Z. Reinstein, T. J. Archer and J. B. Randleman, Mathematical model to compare the relative tensile strength of the cornea after PRK, LASIK, and small incision lenticule extraction, J. Refractive Surg., 2013, 29(7), 454–460.

    Article  Google Scholar 

  21. Y. S. Rabinowitz, Keratoconus, Surv. Ophthalmol., 1998, 42, 297–319.

  22. M. Barnett and M. J. Mannis, Contact lenses in the management of keratoconus, Cornea, 2011, 30, 1510–1516.

    Article  PubMed  Google Scholar 

  23. A. Vega-Estrada, J. L. Alió, A. B. Plaza Puche and J. Marshall, Outcomes of a new microwave procedure followed by accelerated cross-linking for thetreatment of keratoconus: a pilot study, J. Refractive Surg., 2012, 28, 787–793.

    Article  Google Scholar 

  24. J. Colin, B. Cochener, G. Savary and F. Malet, Correcting keratoconus with intracorneal rings, J. Cataract Refractive Surg., 2000, 26, 1117–1122.

    Article  CAS  Google Scholar 

  25. G. R. Snibson, Collagen cross-linking: a new treatment paradigm in corneal disease - a review, Clin. Exp. Ophthalmol., 2010, 38, 141–153.

  26. M. Busin, V. Scorcia, L. Zambianchi and D. Ponzin, Outcomes from a modified microkeratome-assisted lamellar keratoplasty for keratoconus, Arch. Ophthalmol., 2012, 130, 776–782.

    Article  PubMed  Google Scholar 

  27. J. L. Alio, A. Artola, J. M. Ruiz-Moreno, et al., Changes in keratoconic corneas after intracorneal ring segment explantation and reimplantation, Ophthalmology, 2004, 111, 747–751.

    Article  PubMed  Google Scholar 

  28. D. P. Pinero, J. L. Alio, H. Morbelli, et al., Refractive and corneal aberrometric changes after intracorneal ring implantation in corneas with pellucid marginal degeneration, Ophthalmology, 2009, 116, 1656–1664.

    Article  PubMed  Google Scholar 

  29. A. Kubaloglu, Y. Cinar, E. S. Sari, et al., Comparison of 2 intrastromal corneal ring segment models in the management of keratoconus, J. Cataract Refractive Surg., 2010, 36, 978–985.

    Article  Google Scholar 

  30. A. J. Kanellopoulos, L. H. Pe, H. D. Perry and E. D. Donnenfeld, Modified intracorneal ring segment implantations (Intacs) for the management of moderate to advanced keratoconus; efficiency and complications, Cornea, 2006, 25, 29–33.

    Article  PubMed  Google Scholar 

  31. B. S. Boxer Wachler, J. P. Christie, N. S. Chandra, et al., Intacs for keratoconus, Ophthalmology, 2003, 110, 1031–1040.

    Article  PubMed  Google Scholar 

  32. I. Bahar, E. Levinger, I. Kaiserman, et al., IntraLase-enabled astigmatic keratotomy for postkeratoplasty astigmatism, Am. J. Ophthalmol., 2008, 146, 897–904.

    Article  PubMed  Google Scholar 

  33. R. C. Ghanem and D. T. Azar, Femtosecond-laser arcuate wedge-shaped resection to correct high residual astigmatism after penetrating keratoplasty, J. Cataract Refractive Surg., 2006, 32, 1415–1419.

    Article  Google Scholar 

  34. S. M. John, Chang femtosecond laser-assisted astigmatic keratotomy: a review, Eye Vis., 2018, 5, 6.

  35. N. L. Kumar, I. Kaiserman, R. Shehadeh-Mashor, W. Sansanayudh, R. Ritenour and D. S. Rootman, IntraLase-enabled astigmatic keratotomy for post-kerato-plastyastigmatism: on-axis vector analysis, Ophthalmology, 2010, 117, 1228–1235.

    Article  PubMed  Google Scholar 

  36. M. Nubile, P. Carpineto, M. Lanzini, R. Calienno, L. Agnifili, M. Ciancaglini, et al., Femtosecond laser arcuate keratotomy for the correction of high astigmatism after keratoplasty, Ophthalmology, 2009, 116, 1083–1092.

    Article  PubMed  Google Scholar 

  37. C. Cleary, M. Tang, H. Ahmed, M. Fox and D. Huang, Beveled femtosecond laser astigmatic keratotomy for the treatment of high astigmatism post–penetrating keratoplasty, Cornea, 2013, 32, 54–62.

    Article  PubMed  PubMed Central  Google Scholar 

  38. D. Viswanathan and N. L. Kumar, Bilateral femtosecond laser–enabled intrastromal astigmatic keratotomy to correct high post-penetrating keratoplasty astigmatism, J. Cataract Refractive Surg., 2013, 39, 1916–1920.

    Article  Google Scholar 

  39. C. Cleary, M. Tang, H. Ahmed, M. Fox and D. Huang, Beveled femtosecond laser astigmatic keratotomy for the treatment of high astigmatism post-penetrating keratoplasty, Cornea, 2013, 32, 54–62.

    Article  PubMed  PubMed Central  Google Scholar 

  40. R. M. St Clair, A. Sharma, D. Huang, F. Yu, Y. Goldich, D. Rootman, et al., Development of a nomogram for femtosecond laser astigmatic keratotomy for astigmatism after keratoplasty, J. Cataract Refractive Surg., 2016, 42, 556–562.

    Article  Google Scholar 

  41. S. H. Yoo, G. D. Kymionis, T. Ide and V. F. Diakonis, Overcorrection after femtosecondassistedastigmatic keratotomy in a post-Descemet-stripping automated endothelial keratoplasty patient, J. Cataract Refractive Surg., 2009, 35, 1833–1834.

    Article  Google Scholar 

  42. L. Buzzonetti, G. Petrocelli, A. Laborante, E. Mazzilli, M. Gaspari and P. Valente, Arcuate keratotomy for high postoperative keratoplasty astigmatism performed with the intralase femtosecond laser, J. Refractive Surg., 2009, 25, 709–714.

    Article  Google Scholar 

  43. J. Venter, R. Blumenfeld, S. Schallhorn and M. Pelouskova, Non-penetrating femtosecond laser intrastromal astigmatic keratotomy in patients with mixed astigmatism after previous refractive surgery, J. Refractive Surg., 2013, 29, 180–186.

    Article  Google Scholar 

  44. D. Viswanathan and N. L. Kumar, Bilateral femtosecond laser–enabled intrastromal astigmatic keratotomy to correct high post-penetrating keratoplasty astigmatism, J. Cataract Refractive Surg., 2013, 39, 1916–1920.

    Article  Google Scholar 

  45. O. Wetterstrand, J. M. Holopainen and K. Krootila, Femtosecond Laser-Assisted Intrastromal Relaxing Incisions After Penetrating Keratoplasty: Effect of Incision Depth, J. Refractive Surg., 2015, 31, 474–479.

    Article  Google Scholar 

  46. E. Wu, Femtosecond-assisted astigmatic keratotomy, Int. Ophthalmol. Clin., 2011, 51, 77–85.

  47. L. Hoffart, H. Proust, F. Matonti, J. Conrath and B. Ridings, Correction of postkeratoplasty astigmatism by femtosecond laser compared with mechanized astigmatic keratotomy, Am. J. Ophthalmol., 2009, 147(5), 779–787.

    Article  PubMed  Google Scholar 

  48. T. Rückl, A. K. Dexl, A. Bachernegg, V. Reischl, W. Riha, J. Ruckhofer, et al., Femtosecond laser-assisted intrastromal arcuate keratotomy to reduce corneal astigmatism, J. Cataract Refractive Surg., 2013, 39, 528–538.

    Article  Google Scholar 

  49. J. A. Vukich, D. S. Durrie, J. S. Pepose, et al., Evaluation of the small-aperture intracorneal inlay: Three-year results from the cohort of the U.S. Food and Drug Administration clinical trial, J. Cataract Refractive Surg., 2018, 44(5), 541–556.

    Article  Google Scholar 

  50. H. S. Ong, A. S. Chan, C. W. Yau and J. S. Mehta, Corneal Inlays for Presbyopia Explanted Due to Corneal Haze, J. Refractive Surg., 2018, 34(5), 357–360.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Moussa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moussa, S., Dietrich, M., Lenzhofer, M. et al. Femtosecond laser in refractive corneal surgery. Photochem Photobiol Sci 18, 1669–1674 (2019). https://doi.org/10.1039/c9pp00039a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00039a

Navigation