Skip to main content

Advertisement

Log in

Proton transfer in fluorescent secondary amines: synthesis, photophysics, theoretical calculation and preparation of photoactive phosphatidylcholine-based liposomes

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

In this article, new fluorescent lipophilic based benzazoles were synthesized from the reaction between photoactive formyl derivatives and aliphatic amines followed by NaBH4 reduction with good yields. The photophysics of the benzazoles was investigated experimentally and theoretically. These compounds present absorption maxima in the UV region (∼339 nm) and fluorescence emission maxima in the cyan to green region with a large Stokes shift (∼175 nm) due to a proton transfer process in the excited state. Two fluorophores were successfully used as a proof of concept to produce stable photoactive liposomes prepared from phosphatidylcholine (PC) and were characterized by zeta potential, small angle X-ray scattering (SAXS), FTIR and UV-Vis experiments (turbidity). The scattering data indicate that the presence of compounds 20 and 23 reduces the overall surface charge of the PC vesicles, possibly due to the partial neutralization of phosphatidic acid and/or phosphatidylinositol phosphate by the amine groups, and they also modify the structural features of the assemblies, leading, in particular, to a reduction in the thickness of the hydrophobic inner segment (tt) of the liposomes. DFT and TD-DFT calculations were performed with the ωB97XD functional. Geometric analyses show that the 2-(2’-hydroxyphenyl)benzazolic planar portion allows an effective ππ* electronic transition. Additionally, the calculations indicate a small energy barrier to proton transfer. The results of the absorption and emission maxima show a slight solvent influence on the wavelengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. F. Gao, E. Mei, M. Lim and R. M. Hochstrasser, J. Am. Chem. Soc., 2006, 128, 4814.

    Article  CAS  PubMed  Google Scholar 

  2. J. Knobloch, D. K. Suhendro, J. L. Zielenjecki, J. G. Shapter and I. Köper, Saudi J. Biol. Sci., 2015, 22, 714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. M. Haratake, S. Osei-Asante, T. Fuchigami and M. Nakayama, Colloids Surf., B, 2012, 100, 190.

    Article  CAS  Google Scholar 

  4. M. Collot, R. Kreder, A. L. Tatarets, L. D. Patsenker, Y. Mely and A. S. Klymchenko, Chem. Commun., 2015, 51, 17136.

    Article  CAS  Google Scholar 

  5. R. Saxena, S. Shrivastava, S. Haldar, A. S. Klymchenko and A. Chattopadhyay, Chem. Phys. Lipids, 2014, 183, 1.

    Article  CAS  PubMed  Google Scholar 

  6. W. M. Pazin, in Anisotropia de fluorescência: aplicações em membranas modelo, M.Sc. Dissertation, Universidade de São Paulo, São Paulo, in Portuguese, 2012.

  7. H. Bouvrais, T. Pott, L. A. Bagatolli, J. H. Ipsen and P. Méléard, Biochim. Biophys. Acta, Biomembr., 2010, 1798, 1333.

    Article  CAS  Google Scholar 

  8. Fluorescent and Luminescent Probes for Biological Activity: A Practical Guide to Technology for Quantitative Real-Time Analysis, ed. W. T. Mason, Academic Press, 2nd edn, 1999.

  9. X. Fei and Y. Gu, Prog. Nat. Sci., 2009, 19, 1.

  10. T. Terai and T. Nagano, Curr. Opin. Chem. Biol., 2008, 12, 515.

  11. I. Johnson, Histochem. J., 1998, 30, 123.

  12. The Molecular Probes Handbook: A Guide to Fluorescent Probes and Labeling Technologies, ed. L. Johnson and M. T. Z. Spence, Life Technologies, 11th edn, 2010.

  13. R. W. Sinkeldam, N. J. Greco and Y. Tor, Chem. Rev., 2010, 110, 2579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. L. M. S. Loura and J. P. Prates Ramalho, Biochim. Biophys. Acta, Biomembr., 2007, 1768, 467.

  15. M. T. Stöckl and A. Herrmann, Biochim. Biophys. Acta, Biomembr., 2010, 1798, 1444.

  16. Z. Dai and X. Yue, Curr. Med. Chem., 2018, 25, 1397.

  17. S. L. Yefimova, I. Y. Kurilchenko, T. N. Tkacheva, V. A. Rozhkov, A. V. Sorokin, N. Lukianova, N. Bezdenezhnykh, Y. V. Malyukin and V. F. Chekhun, Exp. Oncol., 2012, 34, 101.

    CAS  PubMed  Google Scholar 

  18. A. S. Ulrich, Biosci. Rep., 2002, 22, 129.

  19. J. E. Kwon and S. Y. Park, Adv. Mater., 2011, 23, 3615.

  20. J. Z. Zhao, S. M. Ji, Y. H. Chen, H. M. Guo and P. Yang, Phys. Chem. Chem. Phys., 2012, 14, 8803.

    Article  CAS  PubMed  Google Scholar 

  21. F. S. Santos, E. Ramasamy, V. Ramamurthy and F. S. Rodembusch, J. Photochem. Photobiol., A, 2016, 317, 175.

    Article  CAS  Google Scholar 

  22. C. Yang, Y. Tian, C. Chen, A. Jen and W. Chen, Macromol. Rapid Commun., 2007, 28, 894.

    Article  CAS  Google Scholar 

  23. L. N. Chen, C. C. Kuo, Y. C. Chiu and W. C. Chen, RSC Adv., 2014, 4, 45345.

    Article  CAS  Google Scholar 

  24. Y. Tian, C. Chen, C. Yang, A. C. Young, S. Jang, W. Chen and A. K. Y. Jen, Chem. Mater., 2008, 20, 1977.

    Article  CAS  Google Scholar 

  25. K. Tanaka, T. Kumagai, H. Aoki, M. Deguchi and S. Ywata, J. Org. Chem., 2001, 66, 7328.

    Article  CAS  PubMed  Google Scholar 

  26. M. G. Holler, L. F. Campo, A. Brandelli and V. Stefani, J. Photochem. Photobiol., A, 2002, 149, 217.

    Article  CAS  Google Scholar 

  27. F. S. Rodembusch, F. P. Leusin, L. F. C. Medina, A. Brandelli and V. Stefani, Photochem. Photobiol. Sci., 2005, 4, 254.

    Article  CAS  PubMed  Google Scholar 

  28. F. L. Coelho, F. S. Rodembusch and L. F. Campo, Dyes Pigm., 2014, 110, 134.

    Article  CAS  Google Scholar 

  29. N. I. Zahid, O. K. Aboud-Zied, N. A. N. Saari and R. Hashima, RSC Adv., 2016, 6, 227.

    Article  CAS  Google Scholar 

  30. S. H. Etaiw, T. A. Fayed and N. Z. Saleh, J. Photochem. Photobiol., A, 2006, 177, 238.

    Article  CAS  Google Scholar 

  31. A. Jäger, V. Stefani, S. S. Guterres and A. R. Pohlmann, Int. J. Pharm., 2007, 338, 297.

    Article  PubMed  CAS  Google Scholar 

  32. P. F. Dick, F. L. Coelho, F. S. Rodembusch and L. F. Campo, Tetrahedron Lett., 2014, 55, 3024.

    Article  CAS  Google Scholar 

  33. S. A. J. Sulaiman, G. S. Al-Rasbi and O. K. Abou-Zied, Luminescence, 2016, 31, 614.

    Article  CAS  PubMed  Google Scholar 

  34. O. K. Aboud-Zied, N. I. Zahid, M. F. Khyasudeen, D. S. Giera, J. C. Thimm and R. Hashim, Sci. Rep., 2015, 5, 8699.

    Article  CAS  Google Scholar 

  35. N. Jiang, C. Yang, X. Dong, X. Sun, D. Zhang and C. Liu, Org. Biomol. Chem., 2014, 12, 5250.

    Article  CAS  PubMed  Google Scholar 

  36. F. S. Santos, N. G. Medeiros, R. F. Affeldt, R. D. Duarte, S. Moura and F. S. Rodembusch, New J. Chem., 2016, 40, 2785.

    Article  CAS  Google Scholar 

  37. J. Tong, F. Tian, Q. Li, L. Li, C. Xiang, Y. Liu, J. Dai and F. Jiang, Photochem. Photobiol. Sci., 2012, 11, 1868.

    Article  CAS  PubMed  Google Scholar 

  38. D. W. Ball, Physical Chemistry, Cengage Learning, 1st edn, 2002, p. 836.

  39. S. J. Strickler and R. A. Berg, J. Phys. Chem., 1962, 37, 814.

  40. N. J. Turro, J. C. Scaiano and V. Ramamurthy, in Principles of Molecular Photochemistry: An Introduction, University Science Books, Sausalito, USA, 1st edn, 2008.

  41. F. S. Rodembusch, L. F. Campo, F. P. Leusin and V. Stefani, J. Lumin., 2007, 126, 728.

    Article  CAS  Google Scholar 

  42. F. S. Santos, E. Ramasamy, V. Ramamurthy and F. S. Rodembusch, Photochem. Photobiol. Sci., 2014, 13, 992.

    Article  CAS  PubMed  Google Scholar 

  43. G. O. W. Lins, L. F. Campo, F. S. Rodembusch and V. Stefani, Dyes Pigm., 2010, 84, 114.

    Article  CAS  Google Scholar 

  44. C. A. M. Abella and F. S. Rodembusch, Tetrahedron Lett., 2004, 45, 5601.

  45. A. A. R. Mota, P. H. P. R. Carvalho, B. C. Guido, H. C. B. de Oliveira, T. A. Soares, J. R. Corrêa and B. A. D. Neto, Chem. Sci., 2014, 5, 3995.

    Article  CAS  Google Scholar 

  46. D. Zanette, A. C. Felippe, B. Schweitzer, A. Dal-Bó and A. Lopes, Colloids Surf., A, 2006, 279, 87.

    Article  CAS  Google Scholar 

  47. A. Dal-Bó, B. Schweitzer, A. C. Felippe, D. Zanette and B. Lindman, Colloids Surf., A, 2005, 256, 171.

    Article  CAS  Google Scholar 

  48. M. Manrique-Moreno, P. Garidel, M. Suwalsky, J. Howe and K. Brandenburg, Biochim. Biophys. Acta, 2009, 1788, 1296.

    Article  PubMed  CAS  Google Scholar 

  49. C. Chen and C. P. Tripp, Biochim. Biophys. Acta, 2008, 1778, 2266.

  50. A. M. Smondyrev and M. L. Berkowitz, Biophys. J., 2000, 78, 1672.

  51. H. L. Casal, D. G. Cameron, I. C. P. Smith and H. H. Mantsch, Biochem., 1980, 19, 444.

    Article  CAS  Google Scholar 

  52. D. C. Lee and D. Chapman, Biosci. Rep., 1986, 6, 235.

  53. H. Sun, D. V. Greathouse, O. S. Andersen and R. E. Koeppe 2nd, J. Biol. Chem., 2008, 283, 22233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. L. Zandarashvili, D. Nguyen, K. M. Anderson, M. A. White, D. G. Gorenstein and J. Iwahara, Biophys. J., 2015, 109, 1026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. W. C. Wimley and S. H. White, Nat. Struct. Biol., 1996, 3, 842.

  56. D. Milardi, M. F. M. Sciacca, M. Pappalardo, D. M. Grasso and C. La Rosa, Eur. Biophys. J., 2011, 40, 1.

    Article  CAS  PubMed  Google Scholar 

  57. A. V. Popova and D. K. Hincha, Biophys. J., 2003, 85, 1682.

  58. O. Mertins, P. H. Schneider, A. R. Pohlmann and N. P. da Silveira, Colloids Surf., B, 2010, 75, 294.

    Article  CAS  Google Scholar 

  59. M. S. Micheletto, N. P. da Silveira, D. M. Barboza, M. C. dos Santos, V. R. de Lima, F. C. Giacomelli, J. C. V. Martinez, T. E. A. Frizon and A. G. Dal Bó, Colloids Surf., A, 2015, 467, 166.

    Article  CAS  Google Scholar 

  60. V. I. Tomin, A. P. Demchenko and P.-T. Chou, J. Photochem. Photobiol., C, 2015, 22, 1.

    Article  CAS  Google Scholar 

  61. H. Roohi, N. Mohtamedifar and F. Hejazi, Chem. Phys., 2014, 444, 66.

    Article  CAS  Google Scholar 

  62. H. Roohi, F. Hejazi, N. Mohtamedifar and M. Jahantab, Spectrochim. Acta, Part A, 2014, 118, 228.

    Article  CAS  Google Scholar 

  63. N. Alarcos, M. Gutierrez, M. Liras, F. Sánchez and A. Douhal, Phys. Chem. Chem. Phys., 2015, 17, 16257.

    Article  CAS  PubMed  Google Scholar 

  64. C. Li, C. Ma, D. Li and Y. Liu, J. Lumin., 2016, 172, 29.

    Article  CAS  Google Scholar 

  65. N. Manojai, R. Daengngern, K. Kerdpol, C. Ngaojampa and N. Kungwan, J. Lumin., 2017, 188, 275.

    Article  CAS  Google Scholar 

  66. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Gaussian, Inc., Wallingford CT, 2009.

  67. W. L. F. Armarego, in Purification of Laboratory Chemicals, Elsevier Academic Press, Cornwall, 5th edn, 2003.

  68. C. Wurth, M. Grabolle, J. Pauli, M. Spieles and U. Resch-Genger, Nat. Protoc., 2013, 8, 1535.

    Article  PubMed  CAS  Google Scholar 

  69. C. R. L. Azambuja, L. G. dos Santos, M. R. Rodrigues, R. F. M. Rodrigues, E. F. da Silveira, J. H. Azambuja, A. F. C. Flores, A. P. Horn, C. L. Dora, A. L. Muccillo-Baisch, E. Braganhol, L. S. Pinto, A. L. Parize and V. R. de Lima, Chem. Phys. Lipids, 2015, 193, 24.

    Article  PubMed  CAS  Google Scholar 

  70. F. Szoka and D. Papahadjopoulos, Proc. Natl. Acad. Sci. U. S. A., 1978, 75, 4194.

  71. O. Mertins, M. Sebben, A. R. Pohlmann and N. P. Silveira, Chem. Phys. Lipids, 2005, 138, 29.

    Article  CAS  PubMed  Google Scholar 

  72. M. C. dos Santos, T. Kroetz, C. L. Dora, F. C. Giacomelli, T. E. A. Frizon, C. T. Pich, L. S. Pinto, A. S. Soares, F. S. Rodembusch, V. R. de Lima and A. G. Dal-Bó, J. Colloid Interface Sci., 2018, 519, 232.

    Article  PubMed  CAS  Google Scholar 

  73. J. D. Chai and M. Head-Gordon, J. Chem. Phys., 2009, 131, 174105.

  74. M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees and J. A. Pople, J. Chem. Phys., 1982, 77, 3654.

    Article  CAS  Google Scholar 

  75. A. D. McLean and G. S. Chandler, J. Chem. Phys., 1980, 72, 5639.

  76. F. D. S. Santos, R. R. Descalzo, P. F. B. Gonçalves, E. V. Benvenutti and F. S. Rodembusch, Phys. Chem. Chem. Phys., 2012, 31, 10994.

    Article  CAS  Google Scholar 

  77. R. A. Balaguez, V. G. Ricordi, R. C. Duarte, J. M. Toldo, C. M. Santos, P. H. Schneider, P. F. B. Gonçalves, F. S. Rodembusch and D. Alves, RSC Adv., 2016, 55, 49613.

    Article  CAS  Google Scholar 

  78. D. M. P. Aroche, J. M. Toldo, R. R. Descalzo, P. F. B. Gonçalves and F. S. Rodembusch, New J. Chem., 2015, 39, 6987.

    Article  CAS  Google Scholar 

  79. H. K. D. Sinha and S. K, Chem. Phys., 1986, 102, 337.

  80. C. M. Breneman and K. B. Wiberg, J. Comput. Chem., 1990, 11, 361.

  81. G. A. Andrienko, CHEMCRAFT, http://www.chemcraftprog. com.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabiano S. Rodembusch.

Additional information

Electronic supplementary information (ESI) available: Full spectroscopic characterization spectra. See DOI: 10.1039/c9pp00017h

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kroetz, T., dos Santos, M.C., Beal, R. et al. Proton transfer in fluorescent secondary amines: synthesis, photophysics, theoretical calculation and preparation of photoactive phosphatidylcholine-based liposomes. Photochem Photobiol Sci 18, 1171–1184 (2019). https://doi.org/10.1039/c9pp00017h

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00017h

Navigation