Skip to main content
Log in

One- and two-photon absorption properties of quadrupolar thiophene-based dyes with acceptors of varying strengths

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The one-photon (1P) and two-photon (2P) absorption properties of three quadrupolar dyes, featuring thiophene as a donor and acceptors of varying strengths, are determined by a combination of experimental and computational methods employing the density functional theory (DFT). The emission shifts in different solvents are well reproduced by time-dependent DFT calculations with the linear response and state specific approaches in the framework of the polarizable continuum model. The calculations show that the energies of both 1P- and 2P-active states decrease with an increase of the strength of the acceptor. The 2P absorption cross-sections predicted by the response theory are accounted for by considering just one intermediate state (S1) in the sum-over-states formulation. For the chromophore featuring the stronger acceptor, the energetic positions of the 1P- and 2P-active states prevent the exploitation of the theoretically predicted very high 2P activity due to the competing 1P absorption into the S1 state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Guo, S. Park, J. Yoon and I. Shin, Recent progress in the development of near-infrared fluorescent probes for bioimaging applications, Chem. Soc. Rev., 2014, 43, 16.

    Article  PubMed  Google Scholar 

  2. E. A. Owens, M. Henary, G. El Fakhri and H. S. Choi, Tissue-Specific Near-Infrared Fluorescence Imaging, Acc. Chem. Res., 2016, 49, 1731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. E. Hemmer, A. Benayas, F. Légaré and F. Vetrone, Exploiting the biological windows: current perspectives on fluorescent bioprobes emitting above 1000 nm, Nanoscale Horiz., 2016, 1, 168–184.

    Article  CAS  PubMed  Google Scholar 

  4. T. Terai and T. Nagano, Small-molecule fluorophores and fluorescent probes for bioimaging, Pflügers Arch., 2013, 465, 347–359.

    Article  CAS  PubMed  Google Scholar 

  5. L. E. McNamara, N. Liyanage, A. Peddapuram, J. S. Murphy, J. H. Delcamp and N. I. Hammer, Donor-Acceptor-Donor Thienopyrazines via Pd-Catalyzed C-H Activation as NIR Fluorescent Materials, J. Org. Chem., 2016, 81, 32–42.

    Article  CAS  PubMed  Google Scholar 

  6. B. Zhou, Z. Hu, Y. Jiang, C. Zhon, Z. Sun and H. Sun, Theoretical exploitation of acceptors based on benzobis(thiadiazole) and derivatives for organic NIR-II fluorophores, Phys. Chem. Chem. Phys., 2018, 20, 19759–19767.

    Article  CAS  PubMed  Google Scholar 

  7. F. Di Maria, M. Biasiucci, F. P. Di Nicola, E. Fabiano, A. Zanelli, M. Gazzano, E. Salatelli, M. Lanzi, F. Della Sala, G. Gigli and G. Barbarella, Nanoscale Characterization and Unexpected Photovoltaic Behavior of Low Band Gap Sulfur-Overrich-Thiophene/Benzothiadiazole Decamers and Polymers, J. Phys. Chem. C, 2015, 119, 27200–27211.

    Article  CAS  Google Scholar 

  8. N. Ghofraniha, I. Viola, F. Di Maria, G. Barbarella, G. Gigli and C. Conti, Random laser from engineered nanostructures obtained by surface tension driven lithography, Laser Photonics Rev., 2013, 7, 432–438.

    Article  CAS  Google Scholar 

  9. F. Di Maria, M. Zangoli, I. E. Palamá, E. Fabiano, A. Zanelli, M. Monari, A. Perinot, M. Caironi, V. Maiorano, A. Maggiore, M. Pugliese, E. Salatelli, G. Gigli, I. Viola and G. Barbarella, Improving the Property–Function Tuning Range of Thiophene Materials via Facile Synthesis of Oligo/Polythiophene-S-Oxides and Mixed Oligo/Polythiophene-S-Oxides/Oligo/Polythiophene-S,S-Dioxides, Adv. Funct. Mater., 2016, 26, 6970–6984.

    Article  CAS  Google Scholar 

  10. F. Di Maria, I. E. Palamà, M. Baroncini, A. Barbieri, A. Bongini, R. Bizzarri, G. Gigli and G. Barbarella, Live cell cytoplasm staining and selective labeling of intracellular proteins by non-toxic cell-permeant thiophene fluorophores, Org. Biomol. Chem., 2014, 12, 1603–1610.

    Article  PubMed  CAS  Google Scholar 

  11. M. Locritani, Y. Yu, G. Bergamini, J. K. Molloy, M. Baroncini, B. A. Korgel and P. Ceroni, Silicon nanocrystals functionalized with pyrene units: very efficient lightharvesting antennae with bright near-infrared emission, J. Phys. Chem. Lett., 2014, 5, 3325–3329.

    Article  CAS  PubMed  Google Scholar 

  12. R. Mazzaro, M. Locritani, J. K. Molloy, M. Montalti, Y. Yu, B. A. Korgel, G. Bergamini, V. Morandi and P. Ceroni, Photoinduced processes between pyrene-functionalized Silicon nanocrystals and carbon allotropes, Chem. Mater., 2015, 27 ,4390–4397.

    Article  CAS  Google Scholar 

  13. A. Fermi, M. Locritani, G. Di Carlo, M. Pizzotti, S. Caramori, Y. Yu, B. A. Korgel, G. Bergamini and P. Ceroni, Light-harvesting antennae based on photoactive silicon nanocrystals functionalized with porphyrin chromophores, Faraday Discuss., 2015, 185, 481–495.

    Article  CAS  PubMed  Google Scholar 

  14. F. Romano, Y. Yu, B. A. Korgel, G. Bergamini and P. Ceroni, Light-harvesting antennae based on silicon nanocrystals, Top. Curr. Chem., 2016, 374, 53.

    Article  Google Scholar 

  15. L. Ravotto, Q. Chen, Y. Ma, S. A. Vinogradov, M. Locritani, G. Bergamini, F. Negri, Y. Yu, B. A. Korgel and P. Ceroni, Bright Long-Lived Luminescence of Silicon Nanocrystals Sensitized by Two-Photon Absorbing Antenna, Chem, 2017, 2, 550–560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. M. Pawlicki, H. A. Collins, R. G. Denning and H. L. Anderson, Two-photon absorption and the design of two-photon dyes, Angew. Chem., Int. Ed., 2009, 48, 3244–3266.

    Article  CAS  Google Scholar 

  17. Y. Zhang, S. A. Autry, L. E. McNamara, S. T. Nguyen, N. Le, P. Brogdon, D. L. Watkins, N. I. Hammer and J. H. Delcamp, Near-Infrared Fluorescent Thienothiadiazole Dyes with Large Stokes Shifts and High Photostability, J. Org. Chem., 2017, 82, 5597–5606.

    Article  CAS  PubMed  Google Scholar 

  18. S. I. Kato, T. Matsumoto, T. Ishi-i, T. Thiemann, M. Shigeiwa, H. Gorohmaru, S. Maeda, Y. Yamashita and S. Mataka, Strongly red-fluorescent novel donor–π-bridge–acceptor–π-bridge–donor (D–π–A–π–D) type 21, 3-benzothiadiazoles with enhanced two-photon absorption cross-sections, Chem. Commun., 2004, 2342–2343.

    Google Scholar 

  19. S. I. Kato, T. Matsumoto, M. Shigeiwa, H. Gorohmaru, S. Maeda, T. Ishi-I and S. Mataka, Novel 2, 1, 3-Benzothiadiazole-Based Red-Fluorescent Dyes with Enhanced Two-Photon Absorption Cross-Sections, Chem. – Eur. J., 2006, 12, 2303–2317.

    Article  CAS  Google Scholar 

  20. S. Ellinger, K. R. Graham, P. Shi, R. T. Farley, T. T. Steckler, R. N. Brookins, P. Taranekar, J. Mei, L. A. Padilha, T. R. Ensley, H. Hu, S. Webster, D. J. Hagan, E. W. Van Stryland, K. S. Schanze and J. R. Reynolds, Donor-Acceptor-Donor-based π-Conjugated Oligomers for Nonlinear Optics and Near-IR Emission, Chem. Mater., 2011, 23, 3805–3817.

    Article  CAS  Google Scholar 

  21. S. Yao, B. Kim, X. Yue, M. Y. Colon Gomez, M. V. Bondar and K. D. Belfield, Synthesis of Near-Infrared Fluorescent Two-Photon-Absorbing Fluorenyl Benzothiadiazole and Benzoselenadiazole Derivatives, ACS Omega, 2016, 1, 1149–1156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. T. Yanai, D. P. Tew and N. C. Handy, A new hybrid exchange–correlation functional using the Coulombattenuating method (CAM-B3LYP), Chem. Phys. Lett., 2004, 393, 51–57.

    Article  CAS  Google Scholar 

  23. R. Cammi, S. Corni, B. Mennucci and J. Tomasi, Electronic excitation energies of molecules in solution: state specific and linear response methods for nonequilibrium continuum solvation models, J. Chem. Phys., 2005, 122, 104513.

    Article  CAS  PubMed  Google Scholar 

  24. S. Corni, R. Cammi, B. Mennucci and J. Tomasi, Electronic excitation energies of molecules in solution within continuum solvation models: investigating the discrepancy between state specific and linear response methods, J. Chem. Phys., 2005, 123, 134512.

    Article  CAS  PubMed  Google Scholar 

  25. M. Cossi and V. Barone, Time-dependent density functional theory for molecules in liquid solutions, J. Chem. Phys., 2001, 115, 4708–4717.

    Article  CAS  Google Scholar 

  26. R. Cammi and B. Mennucci, Linear response theory for the polarizable continuum model, J. Chem. Phys., 1999, 110, 9877–9886.

    Article  CAS  Google Scholar 

  27. R. Improta, G. Scalmani, M. J. Frisch and V. Barone, Toward effective and reliable fluorescence energies in solution by a newstate specific polarizable continuum model time dependent density functional theory approach, J. Chem. Phys., 2007, 127, 074504.

    Article  PubMed  CAS  Google Scholar 

  28. R. Improta, V. Barone, G. Scalmani and M. J. Frisch, A state-specific polarizable continuum model time dependent density functional theory method for excited state calculations in solution, J. Chem. Phys., 2006, 125, 054103.

    Article  PubMed  CAS  Google Scholar 

  29. F. Negri and M. Z. Zgierski, Franck–Condon analysis of the S0 → T1 absorption and phosphorescence spectra of biphenyl and bridged derivatives, J. Chem. Phys., 1992, 97, 7124.

    Article  CAS  Google Scholar 

  30. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Gaussian, Inc., Wallingford CT, 2009.

    Google Scholar 

  31. (a) D. H. Friese, M. T. P. Beerepoot, M. Ringholm and K. Ruud, Open-Ended Recursive Approach for the Calculation of Multiphoton Absorption Matrix Elements, J. Chem. Theory Comput., 2015, 11, 1129–1144; (b) M. T. P. Beerepoot, D. H. Friese, N. H. List, J. Kongsted and K. Ruud, Benchmarking two-photon absorption cross sections: performance of CC2 and CAM-B3LYP, Phys. Chem. Chem. Phys., 2015, 17, 19306–19314.

    Google Scholar 

  32. D. H. Friese, C. Hättig and K. Ruud, Calculation of two-photon absorption strengths with the approximate coupled cluster singles and doubles model CC2 using the resolution-of-identity approximation, Phys. Chem. Chem. Phys., 2012, 14, 1175–1184.

    Article  CAS  PubMed  Google Scholar 

  33. Dalton, a molecular electronic structure program, Release Dalton 2016.1 (2016), see http://daltonprogram.org.

  34. K. Aidas, C. Angeli, K. L. Bak, V. Bakken, R. Bast, L. Boman, O. Christiansen, R. Cimiraglia, S. Coriani, P. Dahle, E. K. Dalskov, U. Ekström, T. Enevoldsen, J. J. Eriksen, P. Ettenhuber, B. Fernández, L. Ferrighi, H. Fliegl, L. Frediani, K. Hald, A. Halkier, C. Hättig, H. Heiberg, T. Helgaker, A. C. Hennum, H. Hettema, E. Hjertenæs, S. Høst, I.-M. Høyvik, M. F. Iozzi, B. Jansik, H. J. Aa. Jensen, D. Jonsson, P. Jørgensen, J. Kauczor, S. Kirpekar, T. Kjærgaard, W. Klopper, S. Knecht, R. Kobayashi, H. Koch, J. Kongsted, A. Krapp, K. Kristensen, A. Ligabue, O. B. Lutnæs, J. I. Melo, K. V. Mikkelsen, R. H. Myhre, C. Neiss, C. B. Nielsen, P. Norman, J. Olsen, J. M. H. Olsen, A. Osted, M. J. Packer, F. Pawlowski, T. B. Pedersen, P. F. Provasi, S. Reine, Z. Rinkevicius, T. A. Ruden, K. Ruud, V. Rybkin, P. Salek, C. C. M. Samson, A. Sánchez de Merás, T. Saue, S. P. A. Sauer, B. Schimmelpfennig, K. Sneskov, A. H. Steindal, K. O. Sylvester-Hvid, P. R. Taylor, A. M. Teale, E. I. Tellgren, D. P. Tew, A. J. Thorvaldsen, L. Thøgersen, O. Vahtras, M. A. Watson, D. J. D. Wilson, M. Ziolkowski and H. Ågren, The Dalton quantum chemistry program system, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2014, 4, 269–284.

    CAS  Google Scholar 

  35. S. Sanyal, A. Painelli, S. K. Pati, F. Terenziani and C. Sissa, Aggregates of quadrupolar dyes for two-photon absorption: the role of intermolecular interactions, Phys. Chem. Chem. Phys., 2016, 18, 28198.

    Article  CAS  PubMed  Google Scholar 

  36. I. Palamà, F. Di Maria, I. Viola, E. Fabiano, G. Gigli, C. Bettini and G. Barbarella, Live-Cell-Permeant Thiophene Fluorophores and Cell-Mediated Formation of Fluorescent Fibrils, J. Am. Chem. Soc., 2011, 133, 17777–17785.

    Article  PubMed  CAS  Google Scholar 

  37. C. Kitamura, S. Tanaka and Y. Yamashita, Synthesis of new narrow bandgap polymers based on 5,7-di(2-thienyl)thieno [3,4-b]pyrazine and its derivatives, J. Chem. Soc., Chem. Commun., 1994, 1585–1586.

    Google Scholar 

  38. I. Kmnek, D. Vyprachticky, J. Kriz, J. Dybal and V. Cimrova, Low-Band Gap Copolymers Containing Thienothiadiazole Units: Synthesis, Optical, and Electrochemical Properties, J. Polym. Sci., Part A: Polym. Chem., 2010, 48, 2743–2756.

    Article  CAS  Google Scholar 

  39. G. A. Crosby and J. N. Demas, Measurement of photoluminescence quantum yields. Review, J. Phys. Chem., 1971, 75, 991–1024.

    Article  CAS  Google Scholar 

  40. K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi and S. Tobita, Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned CCD detector, Phys. Chem. Chem. Phys., 2009, 11, 9850–9860.

    Article  CAS  PubMed  Google Scholar 

  41. C. Würth, M. Grabolle, J. Pauli, M. Spieles and U. Resch-Genger, Relative and absolute determination of fluorescence quantum yields of transparent samples, Nat. Protoc., 2013, 8, 1535–1550.

    Article  PubMed  CAS  Google Scholar 

  42. C. Würth, J. Pauli, C. Lochmann, M. Spieles and U. Resch-Genger, Integrating Sphere Setup for the Traceable Measurement of Absolute Photoluminescence Quantum Yields in the Near Infrared, Anal. Chem., 2012, 84, 1345–1352.

    Article  PubMed  CAS  Google Scholar 

  43. (a) C. Xu and W. W. Webb, Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm, J. Opt. Soc. Am. B, 1996, 13, 481; (b) N. S. Makarov, M. Drobizhev and A. Rebane, Two-photon absorption standards in the 550–1600 nm excitation wavelength range, Opt. Express, 2008, 16, 4029–4047.

  44. A. Iagatti, B. Patrizi, A. Basagni, A. Marcelli, A. Alessi, S. Zanardi, R. Fusco, M. Salvalaggio, L. Bussotti and P. Foggi, Photophysical properties and excited state dynamics of 4,7-dithien-2-yl-2,1,3-benzothiadiazole, Phys. Chem. Chem. Phys., 2017, 19, 13604.

    Article  CAS  PubMed  Google Scholar 

  45. Y. Zhen, W. Yue, Y. Li, W. Jiang, S. Di Motta, E. Di Donato, F. Negri, S. Yea and Z. Wang, Chiral nanoribbons based on doubly-linked oligo-perylene bisimides, Chem. Commun., 2010, 46, 6078–6080.

    Article  CAS  Google Scholar 

  46. D. Jacquemin, V. Wathelet, E. A. Perpte and C. Adamo, Extensive TD-DFT Benchmark: Singlet-Excited States of Organic Molecules, J. Chem. Theory Comput., 2009, 5, 2420–2435.

    Article  CAS  PubMed  Google Scholar 

  47. F. Santoro, V. Barone and R. Improta, Can TD-DFT calculations accurately describe the excited states behavior of stacked nucleobases? The cytosine dimer as a test case, J. Comput. Chem., 2008, 29, 957–964.

    Article  CAS  PubMed  Google Scholar 

  48. W. Jiang, C. Xiao, L. Hao, Z. Wang, H. Ceymann, C. Lambert, S. Di Motta and F. Negri, Localization/Delocalization of Charges in Bay-Linked Perylene Bisimides, Chem. – Eur. J., 2012, 18, 6764–6775.

    Article  CAS  PubMed  Google Scholar 

  49. D. Jacquemin, A. Planchat, C. Adamo and B. Mennucci, TD-DFT, Assessment of Functionals for Optical 0–0 Transitions in Solvated Dyes, J. Chem. Theory Comput., 2012, 8, 2359–2372.

    Article  CAS  PubMed  Google Scholar 

  50. A. Prlj, B. F. E. Curchod, A. Fabrizio, L. Floryan and C. Corminboeuf, Qualitatively incorrect features in the TDDFT spectrum of tiophene-based compounds, J. Phys. Chem. Lett., 2015, 6, 13–21.

    Article  CAS  PubMed  Google Scholar 

  51. A. Prlj, M. E. Sandoval-Salinas, D. Casanova, D. Jacquemin and C. Corminboeuf, Low-lying ππ* states of heteroaromatic molecules: a challenge for excited state methods, J. Chem. Theory Comput., 2016, 12, 2652–2660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. O. Uranga-Barandiaran, M. Catherin, E. Zaborova, A. D’Aléo, F. Fages, F. Castet and D. Casanova, Optical properties of quadrupolar and bi-quadrupolar dyes: intra and inter chromophoric interactions, Phys. Chem. Chem. Phys., 2018, 20, 24623–24632.

    Article  CAS  PubMed  Google Scholar 

  53. W. J. Meath and E. A. Power, On the importance of permanent moments in multiphoton absorption using perturbation theory, J. Phys. B: At. Mol. Phys., 1984, 17, 763–781.

    Article  CAS  Google Scholar 

  54. K. Kristensen, J. Kauczor, A. J. Thorvaldsen, P. Jørgensen, T. Kjærgaard and A. Rizzo, Damped response theory description of two-photon absorption, J. Chem. Phys., 2011, 134, 214104.

    Article  PubMed  CAS  Google Scholar 

  55. T. V. Esipova, H. J. Rivera-Jacquez, B. Weber, A. E. Masunov and S. A. Vinogradov, Two-photon absorbing phosphorescent metalloporphyrins: effects of p-extension and peripheral substitution, J. Am. Chem. Soc., 2016, 138, 15648–15662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. M. Plidschun, M. Chemnitz and M. A. Schmidt, Low-loss deuterated organic solvents for visible and near-infrared photonics, Opt. Mater. Express|, 2017, 7, 1122–1130.

    Article  CAS  Google Scholar 

  57. M. Drobizhev, A. Karotki, M. Kruk, A. Krivokapi, H. L. Anderson and A. Rebane, Photon energy upconversion in porphyrins: one-photon hot-band absorption versus two-photon absorption, Chem. Phys. Lett., 2003, 370, 690–699.

    Article  CAS  Google Scholar 

  58. M. Nakano and B. Champagne, Theoretical Design of Open-Shell Singlet Molecular Systems for Nonlinear Optics, J. Phys. Chem. Lett., 2015, 6, 3236–3256.

    Article  CAS  Google Scholar 

  59. M. Nakano, Open-Shell-Character-Based Molecular Design Principles: Applications to Nonlinear Optics and Singlet Fission, Chem. Rec., 2017, 17, 27–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei A. Vinogradov.

Additional information

Electronic supplementary information (ESI) available: Figures and tables with additional details on experimental and computational results. See DOI: 10.1039/c9pp00006b

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canola, S., Mardegan, L., Bergamini, G. et al. One- and two-photon absorption properties of quadrupolar thiophene-based dyes with acceptors of varying strengths. Photochem Photobiol Sci 18, 2180–2190 (2019). https://doi.org/10.1039/c9pp00006b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00006b

Navigation