Skip to main content
Log in

Photo-induced spin switching in a modified anthraquinone modulated by DNA binding

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

An anthraquinone modified with a nitroxide radical and able to intercalate into DNA has been synthesized to obtain a molecule the spin state of which can be manipulated by visible light and DNA binding. The doublet ground state of the molecule can be photo-switched to either a strongly coupled spin state (quartet + doublet), when isolated, or to an uncoupled spin state (triplet and doublet), when bound to DNA. The different spin state that is obtained upon photoexcitation depends on the intercalation of the quinonic core into double-stranded DNA which changes the conformation of the molecule, thereby altering the exchange interaction between the excited state localized on the quinonic core and the nitroxide radical. The spin state of the system has been investigated using both continuous-wave and time-resolved EPR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Wolf, Spintronics: A Spin-Based Electronics Vision for the Future, Science, 2001, 294, 1488–1495.

    Article  CAS  PubMed  Google Scholar 

  2. S. D. Bader and S. S. P. Parkin, Spintronics, Annu. Rev. Condens. Matter Phys., 2010, 1, 71–88.

    Article  CAS  Google Scholar 

  3. D. Sun, E. Ehrenfreund and Z. Valy Vardeny, The first decade of organic spintronics research, Chem. Commun., 2014, 50, 1781–1793.

    Article  CAS  Google Scholar 

  4. A. Bleuzen, V. Marvaud, C. Mathoniere, B. Sieklucka and M. Verdaguer, Photomagnetism in clusters and extended molecule-based magnets, Inorg. Chem., 2009, 48, 3453–3466.

    Article  CAS  PubMed  Google Scholar 

  5. P. Gamez, J. S. Costa, M. Quesada and G. Aromí, Iron Spin-Crossover compounds: From fundamental studies to practical applications, J. Chem. Soc., Dalton Trans., 2009, 7845–7853.

    Google Scholar 

  6. N. Bridonneau, J. Long, J.-L. Cantin, J. von Bardeleben, S. Pillet, E.-E. Bendeif, D. Aravena, E. Ruiz and V. Marvaud, First evidence of light-induced spin transition in molybdenum(IV), Chem. Commun., 2015, 51, 8229–8232.

    Article  CAS  Google Scholar 

  7. B. Doistau, J.-L. Cantin, L.-M. Chamoreau, V. Marvaud, B. Hasenknopf and G. Vives, Mechanical switching of magnetic interaction by tweezers-type complex, Chem. Commun., 2015, 51, 12916–12919.

    Article  CAS  Google Scholar 

  8. M. Dommaschk, F. Gutzeit, S. Boretius, R. Haag and R. Herges, Coordination-Induced Spin-State-Switch (CISSS) in water, Chem. Commun., 2014, 50, 12476–12478.

    Article  CAS  Google Scholar 

  9. P. Gütlich, Y. Garcia and H. A. Goodwin, Spin crossover phenomena in Fe(II) complexes, Chem. Soc. Rev., 2000, 29, 419–427.

    Article  Google Scholar 

  10. S. I. Ohkoshi and H. Tokoro, Photomagnetism in cyanobridged bimetal assemblies, Acc. Chem. Res., 2012, 45, 1749–1758.

    Article  CAS  PubMed  Google Scholar 

  11. O. Sato, Optically Switchable Molecular Solids: Photoinduced Spin-Crossover, Photochromism, and Photoinduced Magnetization, Acc. Chem. Res., 2003, 36, 692–700.

    Article  CAS  PubMed  Google Scholar 

  12. K. Takayama, K. Matsuda and M. Irie, Photoswitching of the Magnetic Interaction between a Copper(II) Ion and a Nitroxide Radical by Using a Photochromic Spin Coupler, Chem. – Eur. J., 2003, 9, 5605–5609.

    Article  CAS  PubMed  Google Scholar 

  13. C. M. Niemeyer, Self-assembled nanostructures based on DNA: Towards the development of nanobiotechnology, Curr. Opin. Chem. Biol., 2000, 4, 609–618.

    Article  CAS  PubMed  Google Scholar 

  14. C. F. J. Faul and M. Antonietti, Ionic self-assembly: Facile synthesis of supramolecular materials, Adv. Mater., 2003, 15, 673–683.

    Article  CAS  Google Scholar 

  15. S. Zhang, Fabrication of novel biomaterials through molecular self-assembly, Nat. Biotechnol., 2003, 21, 1171–1178.

    Article  CAS  PubMed  Google Scholar 

  16. S. Kogikoski, W. J. Paschoalino and L. T. Kubota, Supramolecular DNA origami nanostructures for use in bioanalytical applications, TrAC, Trends Anal. Chem., 2018, 108, 88–97.

    Article  CAS  Google Scholar 

  17. J. P. Watt, G. F. Davies, R. J. O. Connell, R. Geo-, S. Phys, J. Schlittenhardt, B. Seismol, S. Am, M. Weber, F. D. Lewis, T. Wu, Y. Zhang, R. L. Letsinger, S. R. Greenfield and M. R. Wasielewski, Distance-Dependent Electron Transfer in DNA Hairpins, Science, 1997, 277, 673–676.

    Article  Google Scholar 

  18. R. Carmieli, A. K. Thazhathveetil, F. D. Lewis and M. R. Wasielewski, Photoselective DNA Hairpin Spin Switches, J. Am. Chem. Soc., 2013, 135, 10970–10973.

  19. F. D. Lewis, R. L. Letsinger and M. R. Wasielewski, Dynamics of photoinduced charge transfer and hole transport in synthetic DNA hairpins, Acc. Chem. Res., 2001, 34, 159–170.

    Article  CAS  PubMed  Google Scholar 

  20. B. Albinsson, J. K. Hannestad and K. Börjesson, Functionalized DNA nanostructures for light harvesting and charge separation, Coord. Chem. Rev., 2012, 256, 2399–2413.

    Article  CAS  Google Scholar 

  21. M. Palumbo and B. Gatto, Molecular Basis of Specificity in Nucleic Acid-drug Interactions, Proceedings of the Twenty-third Jerusalem Symposium on Quantum Chemistry Ano Biochemistry Held in Jerusalem, Israel, 1990, ed. Bernard Pullman Institut de Biologie Physico-Chimique (Fondation Edmond de Rothschild), Paris, France and JOSHUA JORTNER Department of Chemistry, University of Tel-Aviv, Israel, 1990, pp. 207–224.

  22. B. Gatto, G. Zagotto, C. Sissi, C. Cera, E. Uriarte, G. Palù, G. Capranico and M. Palumbo, Peptidyl anthraquinones as potential antineoplastic drugs: Synthesis, DNA binding, redox cycling, and biological activity, J. Med. Chem., 1996, 39, 3114–3122.

    Article  CAS  PubMed  Google Scholar 

  23. G. Zagotto, R. Supino, E. Favini, S. Moro and M. Palumbo, New 1,4-anthracene-9,10-dione derivatives as potential anticancer agents, Farmaco, 2000, 55, 1–5.

    Article  CAS  PubMed  Google Scholar 

  24. M. Bortolus, A. Ferrarini, J. Van Tol and A. L. Maniero, Full determination of zero field splitting tensor of the excited triplet state of C60 derivatives of arbitrary symmetry from high field TREPR in liquid crystals, J. Phys. Chem. B, 2006, 110, 3220–3224.

    Article  CAS  PubMed  Google Scholar 

  25. M. Bortolus, M. Prato, J. van Tol and A. L. Maniero, Timeresolved EPR study of fullerene C60 adducts at 240 GHz, Chem. Phys. Lett., 2004, 398(1–3), 228–234.

  26. Y. Kandrashkin and A. van der Est, Electron spin polarization of the excited quartet state of strongly coupled triplet–doublet spin systems, J. Chem. Phys., 2004, 120, 4790–4799.

    Article  CAS  PubMed  Google Scholar 

  27. J. Fujisawa, Y. Iwasaki, Y. Ohba, S. Yamauchi, N. Koga, S. Karasawa, M. Fuhs, K. Möbius and S. Weber, Excited quartet and doublet states in the complex of tetraphenylporphine zinc(II) and a nitroxide radical in solution: X- and W-band time-resolved EPR studies, Appl. Magn. Reson., 2001, 21, 483–493.

    Article  CAS  Google Scholar 

  28. Y. Teki, M. Kimura, S. Narimatsu, K. Ohara and K. Mukai, Excited High-Spin Quartet (S = 3/2) State of a Novel π-Conjugated Organic Spin System, Pyrene-Verdazyl Radical, Bull. Chem. Soc. Jpn., 2004, 77, 95–99.

    Article  CAS  Google Scholar 

  29. Y. Teki, S. Miyamoto, K. Iimura, M. Nakatsuji and Y. Miura, Intramolecular spin alignment utilizing the excited molecular field between the triplet (S = 1) excited state and the dangling stable radicals (S = 1/2) as studied by timeresolved electron spin resonance: Observation of the excited quartet (S = 3/2) and quintet (S = 2) states on the purely organic π-conjugated spin systems [18], J. Am. Chem. Soc., 2000, 122, 984–985.

    Article  CAS  Google Scholar 

  30. L. Franco, M. Mazzoni, C. Corvaja, V. P. Gubskaya, L. S. Berezhnaya and I. A. Nuretdinov, First observation of the hyperfine structure of an excited quintet state in liquid solution, Chem. Commun., 2005, 2128.

  31. L. Franco, M. Mazzoni, C. Corvaja, V. P. Gubskaya, L. S. Berezhnaya and I. A. Nuretdinov, TR-EPR of single and double spin labelled C 60 derivatives: observation of quartet and quintet excited states in solution, Mol. Phys., 2006, 104, 1543–1550.

    Article  CAS  Google Scholar 

  32. Y. Teki, M. Nakatsuji and Y. Miura, Spin alignment between the triplet excited state of phenylanthracene and the dangling verdazyl radical as studied by time-resolved electron spin resonance, Int. J. Mod. Phys. B, 2001, 15(28n30), 4029–4031.

  33. R. Hanaishi, Y. Ohba, K. Akiyama, S. Yamauchi and M. Iwaizumi, Observation of spin-correlated radical pairs via two-dimensional electron paramagnetic resonance nutation spectroscopy, J. Chem. Phys., 1995, 103, 4819–4822.

  34. A. Kawai, Dynamic electron polarization created by the radical-triplet pair mechanism: Application to the studies on excited state deactivation processes by free radicals, Appl. Magn. Reson., 2003, 23, 349–367.

    Article  CAS  Google Scholar 

  35. S. Stoll and A. Schweiger, EasySpin, a comprehensive software package for spectral simulation and analysis in EPR, J. Magn. Reson., 2006, 178, 42–55.

    Article  CAS  PubMed  Google Scholar 

  36. M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek and G. R. Hutchison, Avogadro: an advanced semantic chemical editor, visualization, and analysis platform, J. Cheminf., 2012, 4, 17.

    Article  CAS  Google Scholar 

  37. F. Neese, The ORCA program system, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2012, 2, 73–78.

    Article  CAS  Google Scholar 

  38. F. Neese, Software update: the ORCA program system, version 4.0, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2018, 8, 4–9.

    Article  Google Scholar 

  39. A. Navas Diaz, Absorption and emission spectroscopy and photochemistry of 1,10-anthraquinone derivatives: a review, J. Photochem. Photobiol., A, 1990, 53, 141–167.

    Article  CAS  Google Scholar 

  40. A. Ricci, J. Marinello, M. Bortolus, A. Sánchez, A. Grandas, E. Pedroso, Y. Pommier, G. Capranico, A. L. Maniero and G. Zagotto, Electron paramagnetic resonance (EPR) study of spin-labeled camptothecin derivatives: A different look of the ternary complex, J. Med. Chem., 2011, 54(4), 1003–1009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. C. X. Xu, X. Zhang, Y. W. Zhou, H. Wang, Q. Cao, Y. Shen, L. N. Ji, Z. W. Mao and P. Z. Qin, A Nitroxide-Tagged Platinum(II) Complex Enables the Identification of a DNA G-Quadruplex Binding Mode, Chem. – Eur. J., 2016, 22, 3405–3413.

    Article  CAS  PubMed  Google Scholar 

  42. P. Belmont, C. Chapelle, M. Demeunynck, J. Michon, P. Michon and J. Lhomme, Bioorg. Med. Chem. Lett., 1998, 8(6), 669–674.

  43. M. Montalti, A. Credi, L. Prodi and M. Teresa Gandolfi, Handbook of Photochemistry, CRC Press, 3rd edn, 2006.

    Book  Google Scholar 

  44. F. D. Lewis, A. K. Thazhathveetil, T. A. Zeidan, J. Vura-Weis and M. R. Wasielewski, Dynamics of ultrafast singlet and triplet charge transfer in anthraquinone-DNA conjugates, J. Am. Chem. Soc., 2010, 132, 444–445.

    Article  CAS  PubMed  Google Scholar 

  45. R. Carmieli, A. L. Smeigh, S. M. Mickley Conron, A. K. Thazhathveetil, M. Fuki, Y. Kobori, F. D. Lewis and M. R. Wasielewski, Structure and dynamics of photogenerated triplet radical ion pairs in DNA hairpin conjugates with anthraquinone end caps, J. Am. Chem. Soc., 2012, 134, 11251–11260.

    Article  CAS  PubMed  Google Scholar 

  46. S. Yamauchi, Recent Developments in Studies of Electronic Excited States by Means of Electron Paramagnetic Resonance Spectroscopy, Bull. Chem. Soc. Jpn., 2004, 77, 1255–1268.

    Article  CAS  Google Scholar 

  47. V. F. Tarasov, S. S. M. Islam, Y. Ohba, M. D. E. Forbes and S. Yamauchi, Multifrequency TREPR Investigation of Excited-State ZnTPP/Nitroxide Radical Complexes, Appl. Magn. Reson., 2011, 41, 175–193.

    Article  CAS  Google Scholar 

  48. C. Corvaja, M. Maggini, M. Ruzzi, G. Scorrano and A. Toffoletti, Spin polarization in fullerene derivatives containing a nitroxide group. Observation of the intermediate photoexcited quartet state in radical triplet pair interaction, Appl. Magn. Reson., 1997, 12, 477–493.

    Article  Google Scholar 

  49. N. J. Turro, I. V. Khudyakov, S. H. Bossmann and D. W. Dwyer, An electron spin polarization study of the interaction of photoexcited triplet molecules with mono- and polynitroxyl stable free radicals, J. Phys. Chem., 1993, 97, 1138–1146.

    Article  CAS  Google Scholar 

  50. Distance Measurements in Biological Systems by EPR, ed. L. J. Berliner, G. R. Eaton and S. S. Eaton, Springer US, Boston, MA, 2002, vol. 19.

  51. J. S. Kahn, Y. Hu and I. Willner, Stimuli-Responsive DNA-Based Hydrogels: From Basic Principles to Applications, Acc. Chem. Res., 2017, 50, 680–690.

    Article  CAS  PubMed  Google Scholar 

  52. Y. Hu, A. Cecconello, A. Idili, F. Ricci and I. Willner, Triplex DNA Nanostructures: From Basic Properties to Applications, Angew. Chem., Int. Ed., 2017, 56, 15210–15233.

    Article  CAS  Google Scholar 

  53. J. Zhang, J. Wang and H. Tian, Taking orders from light: Progress in photochromic bio-materials, Mater. Horiz., 2014, 1, 169–184.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Bortolus.

Additional information

Electronic supplementary information (ESI) available: Syntheses, calculation details, additional EPR data, and full experimental procedures. See DOI: 10.1039/c8pp00586a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bortolus, M., Ribaudo, G., Toffoletti, A. et al. Photo-induced spin switching in a modified anthraquinone modulated by DNA binding. Photochem Photobiol Sci 18, 2199–2207 (2019). https://doi.org/10.1039/c8pp00586a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00586a

Navigation