Skip to main content

Advertisement

Log in

Novel application of Macrolampis sp2 firefly luciferase for intracellular pH-biosensing in mammalian cells

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Bioluminescence is widely used in biosensors. Firefly luciferase-based bioluminescent sensors are among the most popular ones. Firefly luciferases are pH-sensitive, displaying a large red shift at acidic pH, a property that has been considered undesirable for most applications. Currently, biosensors that can detect intracellular pH are in demand, and some fluorescent biosensors are available. However, pH sensors using bioluminescence have not been used yet. Thus, we decided to harness a firefly luciferase to measure the intracellular pH in mammalian cells. For this purpose, we engineered the luciferase derived from Macrolampis sp2 firefly to localize it on the cytosol or nucleus, in order to observe pH variation in these compartments during biological activities. We first calibrated the emission ratios (R = Igreen/Ired) at different pH values. As expected, we observed a red shift of light emission under acidic conditions when the cells were subjected to different pH conditions in the presence of the K+/H+ ionophore, nigericin. Based on these results, we concluded that this firefly luciferase can be used as a diagnostic tool for measuring the intracellular pH variation in pathogenic cells or in cells during apoptosis. This is the first example of real time-monitoring of pH change using color tuning luciferase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Hastings, Biological diversity, chemical mechanisms and evolutionary origins of bioluminescent systems, J. Mol. Evol., 1983, 19, 309–321.

    Article  CAS  Google Scholar 

  2. T. Wilson and J. W. Hastings, Bioluminescence, Annu. Rev. Cell Dev. Biol., 1998, 14, 197–230.

    Article  CAS  Google Scholar 

  3. N. L. Naylor, Reporter gene technology: the future looks bright, Biochem. Pharmacol., 1999, 58, 749–757.

    Article  CAS  Google Scholar 

  4. G. B. Sala-Newby, J. M. Kendall, H. E. Jones, K. M. Taylor, M. N. Badminton, D. H. Llewellyn and A. K. Campbell, Bioluminescent and chemiluminescent indicators for molecular signaling and function living cells, in Fluorescent and Luminescent Probes for Biological Activity, ed. W. T. Manson, Academic, London, 2nd edn, 1999, pp. 251–271.

  5. V. R. Viviani and Y. Ohmiya, Beetle luciferases: colorful lights on biological processes and diseases, in Photoprotein in Bioanalysis, ed. S. Daunert and S. K. Deo, Wiley-VCH, Weinheim, 2006, pp. 49–63.

  6. E. Michelini, L. Cevenini, L. Mezzanote, B. Roda, L. S. Dolci and A. Roda, Bioluminescent reporter proteins for multicolor assays, Minerva Biotecnol., 2009, 21, 87–96.

    Google Scholar 

  7. A. Roda, L. Mezzanotte, R. Aldini, E. Michelini and L. Cevenini, A new gastric-emptying mouse model based on in vivo non-invasive bioluminescence imaging, Neurogastroenterol. Motil., 2010, 22, 1117–e288.

  8. K. V. Wood and M. G. Gruber, Transduction in microbial biosensors using multiplexed bioluminescence, Biosens. Bioelectron., 1996, 11, 207–214.

    Article  CAS  Google Scholar 

  9. Y. Nakajima, T. Yamazaki, S. Nishii, T. Noguchi, H. Hoshino, K. Niwa, V. R. Viviani and Y. Ohmiya, Enhanced beetle luciferase for high-resolution bioluminescence imaging, PLoS One, 2010, 5, 100–111.

    Google Scholar 

  10. Y. Nakajima, M. Ikeda, T. Kimura, S. Honma, Y. Ohmiya and K. Honma, Bidirectional role of orphan nuclear receptor RORα in clock gene transcriptions demonstrated by a novel reporter assay system, FEBS Lett., 2004, 565, 122–126.

    Article  CAS  Google Scholar 

  11. H. H. Seliger and W. D. McElroy, The colors of firefly bioluminescence: enzyme configuration and species specificity, Proc. Natl. Acad. Sci. U. S. A., 1964, 52, 75–81.

    Article  CAS  Google Scholar 

  12. V. R. Viviani and E. J. H. Bechara, Bioluminescence of Brazilian fireflies (Coleoptera: Lampyridae): spectral distribution and pH-effect on luciferase-elicited colors. Comparison with elaterid and phengodid luciferases, Photochem. Photobiol., 1996, 62, 490–495.

    Article  Google Scholar 

  13. P. Breeuwer, J. Drocourt, F. M. Rombouts and T. Abee, A novel method for continuous determination of the intracellular pH in bacteria with the internally conjugated fluorescent probe 5 (and 6-)-carboxyfluorescein succinimidyl ester, Appl. Environ. Microbiol., 1996, 62, 178–183.

    Article  CAS  Google Scholar 

  14. J. Llopis, J. M. McCaffery, A. Miyawaki, M. G. Farquhar and R. Y. Tsien, Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins, Proc. Natl. Acad. Sci. U. S. A., 1988, 95, 6803–6808.

    Article  Google Scholar 

  15. M. Kneen, J. Farinas, Y. Li and A. S. Verkman, Green fluorescent protein as a noninvasive intracellular pH indicator, Biophys. J., 1998, 74, 1591–1599.

    Article  CAS  Google Scholar 

  16. D. Cui, X. Qian, F. Liu and R. Zhang, Novel fluorescent pH sensors based on intramolecular hydrogen bonding ability of naphthalimide, Org. Lett., 2004, 6, 2757–2760.

    Article  CAS  Google Scholar 

  17. R. Bizzarri, C. Arcangeli, D. Arosio, F. Ricci, P. Faraci, F. Cardarelli and F. Beltram, Development of a novel GFP-based ratiometric excitation and emission pH indicator for intracellular studies, Biophys. J., 2006, 90, 3300–3314.

    Article  CAS  Google Scholar 

  18. D. Arosio, F. Ricci, L. Marchetti, R. Gualdani, L. Albertazzi and F. Beltram, Simultaneous intracellular chloride and pH measurements using a GFP-based sensor, Nat. Methods, 2010, 7, 516–520.

    Article  CAS  Google Scholar 

  19. M. J. Mahon, pHluorin2: an enhanced, ratiometric, pH-sensitive green florescent protein, Adv. Biosci. Biotechnol., 2011, 2, 132–137.

    Article  CAS  Google Scholar 

  20. M. Tantama, Y. P. Hung and G. Yellen, Imaging intracellular pH in live cells with a genetically-encoded red fluorescent protein sensor, J. Am. Chem. Soc., 2011, 133, 10034–10037.

    Article  CAS  Google Scholar 

  21. E. Quatresous, C. Legrand and S. Pouvreau, Mitochondriatargeted cpYFP: pH or superoxide sensor?, J. Gen. Physiol., 2012, 140, 567–570.

    Article  CAS  Google Scholar 

  22. J. W. A. van Beilen and S. Brul, Compartment-specific pH monitoring in Bacillus subtilis using fluorescent sensor proteins: a tool to analyze the antibacterial effect of weak organic acids, Front. Microbiol., 2013, 4, 1–11.

    Google Scholar 

  23. S. Pöea-Guyon, H. Pasquier, F. Mérola, N. Morel and M. Erard, The enhanced cyan fluorescent protein: a sensitive pH sensor for fluorescence lifetime imaging, Anal. Bioanal. Chem., 2013, 405, 3983–3987.

    Article  Google Scholar 

  24. H. Li, H. Dong, M. Yu,C. Liu, Z. Li, L. Wei, L. SunandH. Zhang, Nir ratiometric luminescence detection of pH fluctuation in living cells with hemicyanine derivative-assembled upconversion nanophosphors, Anal. Chem., 2017, 89, 8863–8869.

    Article  CAS  Google Scholar 

  25. T. Asai, S. Nishi, Y. Nakajima and Y. Ohmiya, Beetle luciferases in measuring gene expression and imaging cell functions, in Luciferases and Fluorescent Proteins: Principles and Advances in Biotechnology and Bioimaging, ed. V. R. Viviani and Y. Ohmiya, Transworld Research Network, Kerala, 2007, pp. 151–160.

  26. M. Benčina, Illumination of the spatial order of intracellular pH by genetically encoded pH-sensitive sensors, Sensors, 2013, 13, 16736–16758.

    Article  Google Scholar 

  27. M. Hattori, S. Haga, H. Takakura, M. Ozaki and T. Ozawa, Sustained accurate recording of intracellular acidification in living tissues with a photo-controllable bioluminescent protein, Proc. Natl. Acad. Sci. U. S. A., 2013, 110, 9332–9337.

    Article  CAS  Google Scholar 

  28. V. R. Viviani and E. J. H. Bechara, Biophysical and biochemical aspects of phengodid (railroad-worm) bioluminescence, Photochem. Photobiol., 1993, 58, 615–622.

    Article  CAS  Google Scholar 

  29. V. R. Viviani, T. L. Oehlmeyer, F. G. C. Arnoldi and M. R. Brochetto-Braga, A new firefly luciferase with bimodal spectrum: identification of structural determinants in spectral pH-sensitivity firefly luciferases, Photochem. Photobiol., 2005, 81, 843–848.

    Article  CAS  Google Scholar 

  30. G. V. M. Gabriel and V. R. Viviani, Novel application of pH-sensitive firefly luciferases as dual reporter genes for simultaneous ratiometric analysis of intracellular pH and gene expression/location, Photochem. Photobiol. Sci., 2014, 13, 1661–1670.

    Article  CAS  Google Scholar 

  31. H. Kwon, T. Enomoto, M. Shimogawara, K. Yasuda, Y. Nakajima and Y. Ohmiya, Bioluminescence imaging of dual gene expression at the single-cell level, BioTechniques, 2010, 48, 460–462.

    Article  CAS  Google Scholar 

  32. J. A. Thomas, R. N. Buchsbaum, A. Zimniak and E. Racker, Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ, Biochemistry, 1979, 18, 2210–2218.

    Article  CAS  Google Scholar 

  33. H. H. Seliger and W. D. McElroy, Spectral emission and quantum yield of firefly bioluminescence, Arch. Biochem. Biophys., 1960, 88, 136–141.

    Article  CAS  Google Scholar 

  34. H. H. Seliger and W. D. McElroy, Chemiluminescence of firefly luciferin without enzyme, Science, 1962, 138, 683–685.

    Article  CAS  Google Scholar 

  35. S. H. Cody, P. N. Dubbin, A. D. Beischer, N. D. Duncan, J. S. Hill, A. H. Kaye and D. A. Williams, Intracellular pH mapping with SNARF-1 and confocal microscopy. I: A quantitative technique for living tissues and isolated cells, Micron, 1993, 24, 573–580.

    Article  Google Scholar 

  36. O. Seksek and J. Bolard, Nuclear pH gradient in mammalian cells revealed by laser microspectrofluorimetry, J. Cell Sci., 1996, 109, 257–262.

    CAS  PubMed  Google Scholar 

  37. T. B. Dansen, K. W. A. Wirtz, R. J. A. Wanders and E. H. W. Pap, Peroxisomes in human fibroblasts have a basic pH, Nat. Cell Biol., 2000, 2, 51–53.

    Article  CAS  Google Scholar 

  38. C. Balut, M. vandeVen, S. Despa, I. Lambrichts, M. Ameloot, P. Steels and I. Smets, Measurement of cytosolic and mitochondrial pH in living cells during reversible metabolic inhibition, Kidney Int., 2008, 73, 226–232.

    Article  CAS  Google Scholar 

  39. X. Zhou, F. Su, H. Lu, P. Senechal-Willis, Y. Tian, R. H. Johnson and D. R. Meldrum, An FRET-based ratiometric chemosensor for in vitro cellular fluorescence analyses of pH, Biomaterials, 2012, 33, 171–180.

    Article  CAS  Google Scholar 

  40. Z. Yang, J. Cao, Y. He, J. H. Yang, T. Kim, X. Peng and J. S. Kim, Macro-/micro-environment-sensitive chemosensing and biological imaging, Chem. Soc. Rev., 2014, 43, 4563–4601.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim Ravara Viviani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Mello Gabriel, G.V., Yasuno, R., Mitani, Y. et al. Novel application of Macrolampis sp2 firefly luciferase for intracellular pH-biosensing in mammalian cells. Photochem Photobiol Sci 18, 1212–1217 (2019). https://doi.org/10.1039/c8pp00573g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00573g

Navigation