Skip to main content
Log in

A visible chemosensor based on carbohydrazide for Fe(II), Co(II) and Cu(II) in aqueous solution

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A colorimetric sensor with pyridyl and carbohydrazide components has been synthesized and visibly turns blue in the presence of Fe(II). The colorless sensor also changes color when exposed to Co(II) and Cu(II), but its color becomes yellow. The sensor shows no visible response to other metal ions such Ca2+, Cr3+, Mn2+, Fe3+, Ni2+, Zn2+, Cd2+, Ag+, Hg2+, and Pb2+. The binding ratio of the sensor to Fe(II), Co(II), and Cu(II) is 2 sensors to 1 metal ion. The binding constants of the sensor are: Fe(II): 1.0 × 109 M−2, Co(II): 2 × 109 M−2, and Cu(II): 3.0 × 109 M−2. The sensor works well at neutral pH and micromolar concentrations of Fe(II), Co(II), and Cu(II) can be detected in water samples. The sensor’s color response to Cu(II) is uniquely attenuated by glutathione.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. L. Que, D. W. Domaille and C. J. Chang, Metals in neurobiology: probing their chemistry and biology with molecular imaging, Chem. Rev., 2008, 108, 1517–1549.

    Article  CAS  PubMed  Google Scholar 

  2. D. W. Domaille, E. L. Que and C. J. Chang, Synthetic fluorescent sensors for studying the cell biology of metals, Nat. Chem. Biol., 2008, 4, 168–175.

    Article  CAS  PubMed  Google Scholar 

  3. K. L. Haas and K. J. Franz, Application of metal coordination chemistry to explore and manipulate cell biology, Chem. Rev., 2009, 109, 4921–4960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Y. Ma, W. Luo, P. J. Quinn, Z. Liu and R. C. Hider, Design, synthesis, physicochemical properties, and evaluation of novel iron chelators with fluorescent sensor, J. Med. Chem., 2004, 47, 6349–6362.

    Article  CAS  PubMed  Google Scholar 

  5. E. Yavin, R. Kikkiri, S. Gil, R. Arad-Yellin, E. Yavin and A. Shanzer, Synthesis and biological evaluation of lipophilic iron chelators as protective agents from oxidative stress, Org. Biomol. Chem., 2005, 3, 2685–2687.

    Article  CAS  PubMed  Google Scholar 

  6. K. B. Kim, H. Kim, E. J. Song, S. Kim, I. Noh and C. Kim, A cap-type Schiff base acting as a fluorescence sensor for zinc(II) and a colorimetric sensor for iron(II), copper(II), and zinc(II) in aqueous media, Dalton Trans., 2013, 42, 16569–16577.

    Article  CAS  PubMed  Google Scholar 

  7. T. C. Fox, J. E. Shaff, M. A. Grusak, W. A. Norvell, Y. Chen, R. L. Chaney and L. V. Kochian, Direct measurement of 59Fe-labeled Fe2+ influx in roots of pea using a chelator buffer system to control free Fe2+ in solution, Plant Physiol., 1996, 111, 93–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. S. Sen, S. Sarkar, B. Chattopadhyay, A. Moirangthem, A. Basu, K. Dhara and P. Chattopadhyay, A ratiometric fluorescent chemosensor for iron discrimination of Fe2+ and Fe3+ and living cell application, Analyst, 2012, 137, 3335–3342.

    Article  CAS  PubMed  Google Scholar 

  9. L. Long, N. Wang, Y. Han, M. Huang, X. Yuan, S. Cao, A. Gong and K. Wang, A coumarin-based fluorescent probe for monitoring labile ferrous iron in living systems, Analyst, 2918, 143, 2555–2562.

    Article  Google Scholar 

  10. A. Farhi, F. Firdaus and M. Shakir, Design and application of a tripodal on-off type chemosensor for discriminative and selective detection of Fe2+ ions, New J. Chem., 2018, 42, 6161–6167.

    Article  CAS  Google Scholar 

  11. C. Bhaumik, S. Das, D. Maity and S. Baitalik, A terpyridylimidazole (typ-HImzPh3) based bifunctional receptor for multichannel detection of Fe2+ and F ions, Dalton Trans., 2011, 40, 11795–11808.

    Article  CAS  PubMed  Google Scholar 

  12. X. He, G.-B. Zhang, Z. X. Chi, P.-F. Dai, J.-Y. Huang and J.-X. Yang, Terpyridine functionalized α-cyanostilbene derivative as excellent fluorescence and naked eyes Fe2+ probe in aqueous environment, Chem. Pap., 2017, 71, 2209–2215.

    Article  CAS  Google Scholar 

  13. Z.-B. Zheng, Z.-M. Duan, Y.-Y. Ma and K.-Z. Wang, Highly sensitive and selective difunctional ruthenium(II) complex-based chemosensor for dihydrogen phosphate anion and ferrous cation, Inorg. Chem., 2013, 52, 2306–2316.

    Article  CAS  PubMed  Google Scholar 

  14. J. M. Jung, S. Y. Lee and C. Kim, A novel colorimetric chemosensor for multiple target metal ions Fe2+, Co2+, and Cu2+ in a near-perfect aqueous solution: Experimental and theoretical studies, Sens. Actuators, B, 2017, 251, 291–301.

    Article  CAS  Google Scholar 

  15. L. Q. Li and Z. H. Liu, A Colorimetric and Fluorescent Sensor for Iron Recognition Based on Rhodamine Derivative, J. Fluoresc., 2017, 27, 427–431.

    Article  CAS  PubMed  Google Scholar 

  16. S. R. Bhatta, V. Bheemireddy, G. Vijaykumar, S. Debnath and A. Thakur, An Efficient Molecular Tool with Ferrocene Backbone: Discriminating Fe3+ and Fe2+ in Aqueous Media, Organometallics, 2017, 36, 2141–2152.

    Article  CAS  Google Scholar 

  17. C.-Y. Tsai and Y.-W. Lin, A highly selective and sensitive fluorescence assay for determination of copper(II) and cobalt(II) ions in environmental water and toner samples, Analyst, 2013, 138, 1232–1238.

    Article  CAS  PubMed  Google Scholar 

  18. C.-Y. Li, X.-B. Zhang, Z. Jin, R. Han, G.-L. Shen and R.-Q. Yu, A fluorescent chemosensor for cobalt ions based on a multi-substituted phenol-ruthenium(II) tris(bipyridine) complex, Anal. Chim. Acta, 2006, 580, 143–148.

    Article  CAS  PubMed  Google Scholar 

  19. D. Ou, L. Zhang, Y. Huang, X. Lou, J. Qin and Z. Li, A new disubstituted polyacetylene bearing 6-benzylaminopurine moieties: post functional synthetic strategy and sensitive chemosensor towards copper and cobalt ions, Macromol. Rapid Commun., 2013, 34, 759–766.

    Article  CAS  PubMed  Google Scholar 

  20. J. H. Ye, L. J. Duan and L. L. Jin, A fluorescence sensor for Cu2+ and Co2+ based on click-generated triazole moiety, Adv. Mater. Res., 2012, 554556, 2045–2048.

  21. J. Shi, C. Lu, D. Yan and L. Ma, High selectivity sensing of cobalt in HepG2 cells based on necklace model microenvironment-modulated carbon dot-improved chemiluminescence in Fenton-like system, Biosens. Bioelectron., 2013, 5, 58–64.

    Article  CAS  Google Scholar 

  22. H.-Y. Luo, X.-B. Zhang, C.-L. He, G.-L. Shen and R.-Q. Yu, Synthesis of dipicolylamino substituted quinazoline as chemosensor for cobalt(II) recognition based on excitedstate intramolecular proton transfer, Spectrochim. Acta, Part A, 2008, 70, 337–342.

    Article  CAS  Google Scholar 

  23. Y. Yao, D. Tian and H. Li, Cooperative binding of bifunctionalized and click-synthesized silver nanoparticles for colorimetric Co2+ sensing, ACS Appl. Mater. Interfaces, 2010, 2, 684–690.

    Article  CAS  PubMed  Google Scholar 

  24. H. Wang, J. Li, D. Yao, Q. Gao, F. Guo and P. Xie, A highly selective colorimetric sensor to Fe3+ and Co2+ in aqueous solutions, Res. Chem. Intermed., 2013, 39, 2723–2734.

    Article  CAS  Google Scholar 

  25. K. Liu, P. Guo, L. Liu and X. Shi, Fluorescence enhancement of a novel pyrazine coupled rhodamine derivative for the paramagnetic Co2+ detection, Sens. Actuators, B, 2017, 250, 667–672.

    Article  CAS  Google Scholar 

  26. H.-B. Liu, H.-Y. Zhao, Z. Tong, Y. Zhang, B. Lan and J. Wang, A colorimetric, ratiometric, and fluorescent cobalt(II) chemosensor based on mixed organic ligands, Sens. Actuators, B, 2017, 239, 511–514.

    Article  CAS  Google Scholar 

  27. P. G. Mahajan, N. C. Dige, N. K. Desai, S. R. Patil, V. V. Kondalkar, S.-K. Hong and K. H. Lee, Selective detection of Co2+ by fluorescent nano probe: Diagnostic approach for analysis of environmental samples and biological activities, Spectrochim. Acta, Part A, 2018, 198, 136–144.

    Article  CAS  Google Scholar 

  28. L. Wang, X. Gong, Q. Bing and G. Wang, A new oxadiazolebased dual-mode chemosensor: Colorimetric detection of Co2+ and fluorometric detection of Cu2+ with high selectivity and sensitivity, Microchem. J., 2018, 142, 279–287.

    Article  CAS  Google Scholar 

  29. M. Sohrabi, M. Amimasr, S. Meghdadi, M. Lutz, M. B. Torbati and H. Farrokhpour, A highly selective fluorescence turn-on chemosensor for Zn2+, and its application in liver cell imaging, and as a colorimetric sensor for Co2+: experimental and TD-DFT calculations, New J. Chem., 2018, 42, 12595–12606.

    Article  CAS  Google Scholar 

  30. J. F. Zhang, Y. Zhou, J. Yoon, Y. Kim, S. J. Kim and J. S. Kim, Naphthalimide modified rhodamine derivative: ratiometric and selective fluorescent sensor for Cu2+ based on two different approaches, Org. Lett., 2010, 12, 3852–3855.

    Article  CAS  PubMed  Google Scholar 

  31. X. Qi, E. J. Jun, L. Xu, S.-J. Kim, J. S. J. Hong, Y. J. Yoon and J. Yoon, New BODIPY derivatives as OFF–ON fluorescent chemosensor and fluorescent chemodosimeter for Cu2+: cooperative selectivity enhancement toward Cu2+, J. Org. Chem., 2006, 71, 2881–2884.

    Article  CAS  PubMed  Google Scholar 

  32. Y. R. Bhorge, H.-T. Tsai, K.-F. Huang, A. J. Pape, S. N. Janaki and Y.-P. Yen, A new pyrene-based Schiff-base: a selective colorimetric and fluorescent chemosensor for detection of Cu(II) and Fe(III), Spectrochim. Acta, Part A, 2014, 130, 7–12.

    Article  CAS  Google Scholar 

  33. J. Huang, Y. Xu and X. Qian, A colorimetric sensor for Cu2+ in aqueous solution based on metal ion-induced deprotonation: deprotonation/protonation mediated by Cu2+–ligand interactions, Dalton Trans., 2009, 71, 1761–1766.

    Article  CAS  Google Scholar 

  34. Y.-W. Liu, J.-L. Chir, S.-T. Wang and A.-T. Wu, A selective colorimetric sensor for Cu2+ in aqueous solution, Inorg. Chem. Commun., 2014, 45, 112–115.

    Article  CAS  Google Scholar 

  35. E. Gaggelli, H. Kozlowski, D. Valensin and G. Valensin, Copper homeostasis and neurodegenerative disorders (Alzheimer’s, prion, and Parkinson’s diseases and amyotrophic lateral sclerosis), Chem. Rev., 2006, 106, 1995–2044.

    Article  CAS  PubMed  Google Scholar 

  36. F. Arnesano, L. Banci, I. Bertini and S. Ciofi-Baffoni, Perspectives in inorganic structural genomics: a trafficking route for copper, Eur. J. Inorg. Chem., 2004, 2004, 1583–1593.

    Article  CAS  Google Scholar 

  37. G. J. Park, I. H. Hwang, E. J. Song, H. Kim and C. Kim, A colorimetric and fluorescent sensor for sequential detection of copper ion and cyanide, Tetrahedron, 2014, 70, 2822–2828.

    Article  CAS  Google Scholar 

  38. K. J. Barnham, C. L. Masters and A. I. Bush, Neurodegenerative diseases and oxidative stress, Nat. Rev. Drug Discovery, 2004, 3, 205–214.

    Article  CAS  PubMed  Google Scholar 

  39. G. R. You, G. J. Park, J. J. Lee and C. Kim, A colorimetric sensor for the sequential detection of Cu2+ and CN in fully aqueous media: practical performance of Cu2+, Dalton Trans., 2015, 44, 9120–9129.

    Article  CAS  PubMed  Google Scholar 

  40. Y. K. Jang, U. C. Nam, H. L. Kwon, I. H. Hwang and C. Kim, A selective colorimetric and fluorescent chemosensor based-on naphthol for detection of Al3+ and Cu2+, Dyes Pigm., 2013, 99, 6–13.

    Article  CAS  Google Scholar 

  41. R. Krämer, Fluorescent chemosensors for Cu2+ ions: fast, selective, and highly sensitive, Angew. Chem., Int. Ed., 1998, 37, 772–773.

    Article  Google Scholar 

  42. J. Y. Noh, G. J. Park, Y. J. Na, H. Y. Jo, S. A. Lee and C. Kim, A colorimetric “naked-eye” Cu(II) chemosensor and pH indicator in 100% aqueous solution, Dalton Trans., 2014, 43, 5652–5656.

    Article  CAS  PubMed  Google Scholar 

  43. A. J. Beneto and A. Siva, A phenanthroimidazole based effective colorimetric chemosensor for copper(II) and fluoride ions, Sens. Actuators, B, 2017, 247, 526–531.

    Article  CAS  Google Scholar 

  44. L. Li, H. Li, G. Liu and S. Pu, A colorimetric and fluorescent chemosensor for selective detection of Cu2+ based on a new diarylethene with a benzophenone hydrazone unit, Luminescence, 2017, 32, 1473–1481.

    Article  CAS  PubMed  Google Scholar 

  45. C. Wu, J. Wang, J. Shen, C. Zhang, Z. Wu and H. Zhou, A colorimetric quinolone-based chemosensor for sequential detection of copper ion and cyanide anions, Tetrahedron, 2017, 73, 5715–5719.

    Article  CAS  Google Scholar 

  46. A. K. Manna, J. Mondal, K. Rout and G. K. Patra, A new ICT based Schiff-base chemosensor for colorimetric selective detection of copper and its copper complex for both colorimetric and fluorometric detection of Cysteine, J. Photochem. Photobiol., A, 2018, 367, 74–82.

    Article  CAS  Google Scholar 

  47. P. Milindanuth and P. Pisitsak, A novel colorimetric sensor based on rhodamine-B derivative and bacterial cellulose for the detection of Cu(II) ions in water, Mater. Chem. Phys., 2018, 216, 325–331.

    Article  CAS  Google Scholar 

  48. R. Chandera, An. Ghorai and G. K. Patra, A simple benzildihydrazone derived colorimetric and fluorescent ‘on-off-on’ sensor for sequential detection of copper(II) and cyanide ions in aqueous solution, Sens. Actuators, B, 2018, 255, 701–711.

    Article  CAS  Google Scholar 

  49. G. J. Park, Y. J. Na, H. Y. Jo, S. A. Lee and C. Kim, A colorimetric organic chemo-sensor for Co2+ in a fully aqueous environment, Dalton Trans., 2014, 43, 6618–6622.

    Article  CAS  PubMed  Google Scholar 

  50. M. Iniya, D. Jeyanthi, K. Krishnaveni and D. Chellappa, Vitamin B6 cofactor based fluorescent probe for sensing an anion F and cation Co2+ independently in a pure aqueous medium, RSC Adv., 2014, 4, 25393–25397.

    Article  CAS  Google Scholar 

  51. D. Maity and T. Govindaraju, Highly selective colorimetric chemosensor for Co2+, Inorg. Chem., 2011, 50, 11282–11284.

    Article  CAS  PubMed  Google Scholar 

  52. J.-R. Zhou, D.-P. Liu, Y. He, X.-J. Kong, Z.-M. Zhang, Y.-P. Ren, L.-S. Long, R.-B. Huang and L.-S. Zheng, A highly selective colorimetric chemosensor for cobalt(II) ions based on a tripodal amide ligand, Dalton Trans., 2014, 43, 11579–11586.

    Article  CAS  PubMed  Google Scholar 

  53. Y. Li, J. Wu, X. Jin, J. Wang, S. Han, W. Wu, J. Xu, W. Liu, X. Yao and Y. Tang, A bimodal multianalyte simple molecule chemosensor for Mg2+, Zn2+, and Co2+, Dalton Trans., 2014, 43, 1881–1887.

    Article  CAS  PubMed  Google Scholar 

  54. M. N. El-Nahass, D. M. A. El-Aziz and T. A. Fayed, Selective “on–off–on” switchable hemosensor for metal ions detection and its complexes, Sens. Actuators, B, 2014, 205, 377–390.

    Article  CAS  Google Scholar 

  55. F. A. Abebe, C. S. Eribal, G. Ramakrishna and E. Sinn, A “turn-on” fluorescent sensor for the selective detection of cobalt and nickel ions in aqueous media, Tetrahedron Lett., 2011, 52, 5554–5558.

    Article  CAS  Google Scholar 

  56. S. H. Mashraqui, M. Chandiramani, R. Betkar and K. Poonia, A simple internal charge transfer probe offering dual optical detection of Co(II) via color and fluorescence modulations, Tetrahedron Lett., 2010, 51, 1306–1308.

    Article  CAS  Google Scholar 

  57. S. Patil, U. Fegade, S. K. Sahoo, A. Singh, J. Marek, N. Singh and R. Bendre, Highly sensitive ratiometric chemosensor for selective “naked-eye” nanomolar detection of Co2+ in semi-aqueous media, ChemPhysChem, 2014, 15, 2230–2235.

    Article  CAS  PubMed  Google Scholar 

  58. S. Goswami, D. Sen and N. K. Das, A new highly selective, ratiometric and colorimetric fluorescence sensor for Cu2+ with a remarkable red shift in absorption and emission spectra based on internal charge transfer, Org. Lett., 2010, 12, 856–859.

    Article  CAS  PubMed  Google Scholar 

  59. T. G. Jo, Y. J. Na, J. J. Lee, M. M. Lee, S. Y. Lee and C. Kim, A multifunctional colorimetric chemosensor for cyanide and copper(II) ions, Sens. Actuators, B, 2015, 211, 498–506.

    Article  CAS  Google Scholar 

  60. S. A. Lee, J. J. Lee, J. W. Shin, K. S. Min and C. Kim, A colorimetric chemosensor for the sequential detection of copper(II) and cysteine, Dyes Pigm., 2015, 116, 131–138.

    Article  CAS  Google Scholar 

  61. R. Joseph, J. P. Chinta and C. P. Rao, Calix[4]arene-based 1,3-diconjugate of salicylylimine having dibenzyl amine moiety (L): synthesis, characterization, receptor properties toward Fe2+, Cu2+, and Zn2+, crystal structures of its Zn2+ and Cu2+ complexes, and selective phosphate sensing, Inorg. Chem., 2011, 50, 7050–7058.

    Article  CAS  PubMed  Google Scholar 

  62. H. M. Yeo, B. J. Ryu and K. C. Nam, A novel fluoride ion colorimetric chemosensor, Org. Lett., 2008, 10, 2931–2934.

    Article  CAS  PubMed  Google Scholar 

  63. Y. J. Na, Y. W. Choi, J. Y. Yun, K.-M. Park, P.-S. Chang and C. Kim, Dual-channel detection of Cu2+ and F with a simple Schiff-based colorimetric and fluorescent sensor, Spectrochim. Acta, Part A, 2014, 136, 1649–1657.

    Article  CAS  Google Scholar 

  64. E. J. Song, J. Kang, G. R. You, G. J. Park, Y. Kim, S.-J. Kim, C. Kim and R. G. Harrison, A single molecule that acts as a fluorescence sensor for zinc and cadmium and a colorimetric sensor for cobalt, Dalton Trans., 2013, 42, 15514–15520.

    Article  CAS  PubMed  Google Scholar 

  65. N. O. Laschuk, I. I. Ebralidze, S. Quaranta, S. T. W. Kerr, J. G. Egan, S. Gillis, F. Gaspari, A. Latini and O. V. Zenkina, Rational design of a material for rapid colorimetric Fe2+ detection, Mater. Des., 2016, 107, 18–25.

    Article  CAS  Google Scholar 

  66. X. Bai, Y. Li, H. Gu and Z. Hua, Selective colorimetric sensing of Co2+ and Cu2+ using 1-(2-pyridylazo)-2-naphthol derivative immobilized polyvinyl alcohol microspheres, RSC Adv., 2015, 5, 77217–77226.

    Article  CAS  Google Scholar 

  67. A. Garcia de Torres, J. M. Cano Pavon and F. Castaneda, Analytical properties of di(2-pyridyl) ketone 2-furoylhydrazone and spectrophotometric determination of trace amounts of iron, Mikrochim. Acta, 1984, 3, 375–382.

    Article  CAS  Google Scholar 

  68. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian and J. V. Ort, Gaussian 09, Revision A.02 (n.d.).

  69. A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 1993, 98, 5648–5652.

    Article  CAS  Google Scholar 

  70. C. Lee, W. Yang and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B: Condens. Matter Mater. Phys., 1988, 37, 785–789.

    Article  CAS  Google Scholar 

  71. M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees and J. A. Pople, Self-consistent molecular orbital methods. 23. a polarization-type basis set for 2nd-row elements, J. Chem. Phys., 1982, 77, 3654–3665.

    Article  CAS  Google Scholar 

  72. P. J. Hay and W. R. Wadt, Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg, J. Chem. Phys., 1985, 82, 270–283.

    Article  CAS  Google Scholar 

  73. M. Cossi and V. Barone, Time-dependent density functional theory for molecules in liquid solutions, J. Chem. Phys., 2001, 115, 4708–4471.

    Article  CAS  Google Scholar 

  74. E. M. Kober and T. J. Meyer, Concerning the absorption spectra of the ions M(bpy)3 2+ (M=Fe, Re, Os: bpy=2,2′-bipyridine), Inorg. Chem., 1982, 21, 3967–3977.

    Article  CAS  Google Scholar 

  75. E. Requena, J. J. Laserna, A. Navas and F. G. Sanchez, Pyridine-2-aldehyde 2-Furoylhydrazone as a Fluorogenic Reagent for the Determination of Nanogram Amounts of Gallium, Analyst, 1983, 108, 933–938.

    Article  CAS  Google Scholar 

  76. S. Huang, P. Du, C. Min, Y. Liao, H. Sun and Y. Jiang, Poly(1-amino-5-chloroanthraquinone): highly selective and ultrasensitive fluorescent chemosensor for ferric ion, J. Fluoresc., 2013, 23, 621–627.

    Article  CAS  PubMed  Google Scholar 

  77. H. G. Gorchev and G. Ozolins, WHO guidelines for drinking-water quality, WHO Chron., 2011, 38, 104–108.

    Google Scholar 

  78. W. S. Postal, E. J. Vogel, C. M. Young and F. T. Greenaway, The binding of copper(II) and zinc(II) to oxidized glutathione, J. Inorg. Biochem., 1985, 25, 25–33.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheal Kim.

Additional information

Electronic supplementary information (ESI) available: UV-vis spectra of the sensor and metals with the sensor; Job plots of Fe(II), Co(II), and Cu(II) with the sensor; absorption spectra of the sensor and Cu(II); an absorption plot of the sensor with Cu(II) and other metal ions; calculated excitation energies and orbital diagrams; and reusable plots of Fe(II) and Co(II). See DOI: 10.1039/c8pp00545a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Chae, J.B., Kim, C. et al. A visible chemosensor based on carbohydrazide for Fe(II), Co(II) and Cu(II) in aqueous solution. Photochem Photobiol Sci 18, 1249–1258 (2019). https://doi.org/10.1039/c8pp00545a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00545a

Navigation