Skip to main content
Log in

Time-dependent emission stokes shift in Au, Ag and Au/Ag fluorescent nanoclusters: evidence of multiple emissive states

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Au, Ag and bimetallic Au/Ag nanoclusters were prepared under similar microwave-irradiated synthesis conditions in aqueous solutions, using BSA as a stabilizer. The nanoclusters exhibited strong fluorescence with characteristic emission spectral peak features that suggested the presence of multiple emissive states in each case. Time-resolved emission studies revealed the very rare incidence of the time-dependent emission Stokes shift in metal nanoclusters over a time-scale of ~10 ns. The shifts were of varying degrees: ~200 cm−1 for Ag, ~750 cm−1 for Au and ~1400 cm−1 for Au/Ag nanoclusters. Application of the Time-Resolved Area Normalized Emission Spectra (TRANES) method confirmed the existence of multiple emissive species in each of the nanoclusters, which also helped to explain the time-dependent emission Stokes shift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Schmid, The Relevance of Shape and size of Au55 Clusters, Chem. Soc. Rev., 2008, 37, 1909–1930.

    Article  CAS  PubMed  Google Scholar 

  2. H. Qian, M. Zhu, Z. Wu and R. Jin, Quantum Sized Gold Nanoclusters with Atomic Precision, Acc. Chem. Res., 2012, 45, 1470–1479.

    Article  CAS  PubMed  Google Scholar 

  3. S. H. Yau, O. Varnavski and T. Goodson III, An Ultrafast Look at Au Nanoclusters, Acc. Chem. Res., 2013, 46, 1506–1516.

    Article  CAS  PubMed  Google Scholar 

  4. J. Zheng, C. Zhang and R. M. Dickson, Highly Fluorescent, Water-Soluble, Size-Tunable Gold Quantum Dots, Phys. Rev. Lett., 2004, 93, 0774021–0774024.

    Google Scholar 

  5. J. Zheng, P. R. Nicovich and R. M. Dickson, Highly Fluorescent Noble-Metal Quantum Dots, Annu. Rev. Phys. Chem., 2007, 58, 409–431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. R. Jin, Quantum sized, Thiolate-protected Gold Nanoclusters, Nanoscale, 2010, 2, 343–362.

  7. J. F. Parker, C. A. Fields-Zinna and R. W. Murray, The Story of a Monodisperse Gold Nanoparticle: Au25L18, Acc. Chem. Res., 2010, 43, 1289–1296.

    Article  CAS  PubMed  Google Scholar 

  8. S. Kumar, M. D. Bolan and T. P. Bigioni, Glutathione-Stabilized Magic-Number Silver Cluster Compounds, J. Am. Chem. Soc., 2010, 132, 13141–13143.

    Article  CAS  PubMed  Google Scholar 

  9. J. Guo, S. Kumar, M. Bolan, A. Desireddy, T. P. Bigioni and W. P. Griffith, Mass Spectrometric Identification of Silver Nanoparticles: The Case of Ag32(SG)19, Anal. Chem., 2012, 84, 5304–5308.

    Article  CAS  PubMed  Google Scholar 

  10. S. M. Swasey, N. Karimova, C. M. Aikens, D. E. Schultz, A. J. Simon and E. G. Gwinn, Chiral Electronic Transitions in Fluorescent Silver Clusters Stabilized by DNA, ACS Nano, 2014, 8, 6883–6892.

    Article  CAS  PubMed  Google Scholar 

  11. H.-C. Hsu, M.-C. Ho, K.-H. Wang, Y.-F. Hsu and C.-W. Chang, DNA Stabilized Silver Nanoclusters as the Fluorescent Probe for Studying the Structural Fluctuations and the Solvation Dynamics of Human Telomeric DNA, New J. Chem., 2015, 39, 2140–2145.

    Article  CAS  Google Scholar 

  12. U. Anand, S. Ghosh and S. Mukherjee, Toggling Between Blue- and Red-Emitting Fluorescent Silver Nanoclusters, J. Phys. Chem. Lett., 2012, 3, 3605–3609.

    Article  CAS  PubMed  Google Scholar 

  13. J. Yu, S. A. Patel and R. M. Dickson, In Vitro and Intracellular Production of Peptide-Encapsulated Fluorescent Silver Nanoclusters, Angew. Chem., Int. Ed., 2007, 46, 2028–2030.

    CAS  Google Scholar 

  14. C. I. Richards, S. Choi, J.-C. Hsiang, Y. Antoku, T. Vosch, A. Bongiorno, Y.-L. Tzeng and R. M. Dickson, Oligonucleotide-Stabilized Ag Nanocluster Fluorophores, J. Am. Chem. Soc., 2008, 130, 5038–5039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Y. Chen, T. Yang, H. Pan, Y. Yuan, L. Chen, M. Liu, K. Zhang, S. Zhang, P. Wu and J. Xu, Photoemission Mechanism of Water-Soluble Silver Nanoclusters: Ligandto-Metal−Metal Charge Transfer vs Strong Coupling between Surface Plasmon and Emitters, J. Am. Chem. Soc., 2014, 136, 1686–1689.

    Article  CAS  PubMed  Google Scholar 

  16. M. Dandapat and D. Mandal, Fluorescent Ag Nanoclusters Prepared in Aqueous Poly(Acrylic acid-co-Maleic acid) Solutions: a Spectroscopic Study of their Excited State Dynamics, Size and Local Environment, Phys. Chem. Chem. Phys., 2016, 18, 2564–2573.

    Article  CAS  PubMed  Google Scholar 

  17. I. Díez, R. H. A. Ras, M. I. Kanyuk and A. P. Demchenko, On Heterogeneity in Fluorescent Few-atom Silver Nanoclusters, Phys. Chem. Chem. Phys., 2013, 15, 979–985.

    Article  PubMed  Google Scholar 

  18. I. Díez, M. Pusa, S. Kulmala, H. Jiang, A. Walther, A. S. Goldmann, A. H. E. Müller, O. Ikkala and R. H. A. Ras, Color Tunability and Electrochemiluminescence of Silver Nanoclusters, Angew. Chem., Int. Ed., 2009, 48, 2122–2125.

    Article  CAS  Google Scholar 

  19. S. Liu, F. Lu and J.-J. Zhu, Highly fluorescent Ag nanoclusters: Microwave-assisted Green Synthesis and Cr3+ Sensing, Chem. Commun., 2011, 47, 2661–2663.

    Article  CAS  Google Scholar 

  20. M. Zhou, J. Zhong, S. Wang, Q. Guo, M. Zhu, Y. Pei and A. Xia, Ultrafast Relaxation Dynamics of Luminescent Rod-Shaped, Silver-Doped AgxAu25−x Clusters, J. Phys. Chem. C, 2015, 119, 18790–18797.

    Article  CAS  Google Scholar 

  21. M. Y. Sfeir, H. Qian, K. Nobusada and R. Jin, Ultrafast Relaxation Dynamics of Rod-Shaped 25-Atom Gold Nanoclusters, J. Phys. Chem. C, 2011, 115, 6200–6207.

    Article  CAS  Google Scholar 

  22. T. Udayabhaskararao and T. Pradeep, New Protocols for the Synthesis of Stable Ag and Au Nanocluster Molecules, J. Phys. Chem. Lett., 2013, 4, 1553–1564.

    Article  CAS  PubMed  Google Scholar 

  23. J. Zhong, X. Tang, J. Tang, J. Su and Y. Pei, Density Functional Theory Studies on Structure, Ligand Exchange, and Optical Properties of Ligand-Protected Gold Nanoclusters: Thiolate versus Selenolate, J. Phys. Chem. C, 2015, 119, 9205–9214.

    Article  CAS  Google Scholar 

  24. P. D. Jadzinsky, G. Calero, C. J. Ackerson, D. A. Bushnell and R. D. Kornberg, Structure of a Thiol Monolayer–Protected Gold Nanoparticle at 1.1 Å Resolution, Science, 2007, 318, 430–433.

    Article  CAS  PubMed  Google Scholar 

  25. C. M. Aikens, Electronic Structure of Ligand-Passivated Gold and Silver Nanoclusters, J. Phys. Chem. Lett., 2011, 2, 99–104.

  26. H. Kawasaki, K. Hamaguchi, I. Osaka and R. Arakawa, ph-Dependent Synthesis of Pepsin-Mediated Gold Nanoclusters with Blue Green and Red Fluorescent Emission, Adv. Funct. Mater., 2011, 21, 3508–3515.

    Article  CAS  Google Scholar 

  27. L. Shang, S. Brandholt, F. Stockmar, V. Trouillet, M. Bruns and G. U. Nienhaus, Effect of Protein Adsorption on the Fluorescence of Ultrasmall Gold Nanoclusters, Small, 2012, 5, 661–665.

    Article  CAS  Google Scholar 

  28. Y. Negishi, Y. Takasugi, S. Sato, H. Yao, K. Kimura and T. Tsukuda, Magic-Numbered Aun Clusters Protected by Glutathione Monolayers (n = 18, 21, 25, 28, 32, 39): Isolation and Spectroscopic Characterization, J. Am. Chem. Soc., 2004, 126, 6518–6519.

    Article  CAS  PubMed  Google Scholar 

  29. Y. Negishi, K. Nobusada and T. Tsukuda, Glutathione-Protected Gold Clusters Revisited: Bridging the Gap between Gold(I)-Thiolate Complexes and Thiolate-Protected Gold Nanocrystals, J. Am. Chem. Soc., 2005, 127, 5261–5270.

    Article  CAS  PubMed  Google Scholar 

  30. K. G. Stamplecoskie and P. V. Kamat, Size-Dependent Excited State Behavior of Glutathione-Capped Gold Clusters and Their Light-Harvesting Capacity, J. Am. Chem. Soc., 2014, 136, 11093–11099.

    Article  CAS  PubMed  Google Scholar 

  31. J. Xie, Y. Zheng and J. Y. Ying, Protein-Directed Synthesis of Highly Fluorescent Gold Nanoclusters, J. Am. Chem. Soc., 2009, 131, 888–889.

    Article  CAS  PubMed  Google Scholar 

  32. J. Xie, Y. Zheng and J. Y. Ying, Highly Selective and Ultrasensitive Detection of Hg2+ Based on Fluorescence Quenching of Au Nanoclusters by Hg2+–Au+ Interactions, Chem. Commun., 2010, 46, 961–963.

    Article  CAS  Google Scholar 

  33. X. Wen, P. Yu, Y.-R. Toh and J. Tang, Structure-Correlated Dual Fluorescent Bands in BSA-Protected Au25 Nanoclusters, J. Phys. Chem. C, 2012, 116, 11830–11836.

    Article  CAS  Google Scholar 

  34. X. Wen, P. Yu, Y.-R. Toh, A.-C. Hsu, Y.-C. Lee and J. Tang, Fluorescence Dynamics in BSA-Protected Au25 Nanoclusters, J. Phys. Chem. C, 2012, 116, 19032–19038.

    Article  CAS  Google Scholar 

  35. M. Wang, Q. Mei, K. Zhang and Z. Zhang, Protein-gold Nanoclusters for Identification of Amino Acids by Metal Ions Modulated Ratiometric Fluorescence, Analyst, 2012, 137, 1618–1623.

    Article  CAS  PubMed  Google Scholar 

  36. Y. Xu, S. Palchoudhury, Y. Qin, T. Macher and Y. Bao, Make Conjugation Simple: A Facile Approach to Integrated Nanostructures, Langmuir, 2012, 28, 8767–8772.

    Article  CAS  PubMed  Google Scholar 

  37. S. Raut, R. Rich, R. Fudala, S. Butler, R. Kokate, Z. Gryczynski, R. Luchowskic and I. Gryczynski, Resonance Energy Transfer between Fluorescent BSA Protected Au Nanoclusters and Organic Fluorophores, Nanoscale, 2014, 6, 385–391.

    Article  CAS  PubMed  Google Scholar 

  38. X. Le Guével, B. Hötzer, G. Jung, K. Hollemeyer, V. Trouillet and M. Schneider, Formation of Fluorescent Metal (Au, Ag) Nanoclusters Capped in Bovine Serum Albumin Followed by Fluorescence and Spectroscopy, J. Phys. Chem. C, 2011, 115, 10955–10963.

    Article  CAS  Google Scholar 

  39. J. S. Mohanty, P. L. Xavier, K. Chaudhari, M. S. Bootharaju, N. Goswami, S. K. Pal and T. Pradeep, Luminescent, Bimetallic AuAg Alloy Quantum Clusters in Protein Templates, Nanoscale, 2012, 4, 4255–4262.

    Article  CAS  PubMed  Google Scholar 

  40. Y.-N. Chen, P.-C. Chen, C.-W. Wang, Y.-S. Lin, C.-M. Ou, L.-C. Ho and H.-T. Chang, One-pot Synthesis of Fluorescent BSA–Ce/Au Nanoclusters as Ratiometric pH probes, Chem. Commun., 2014, 50, 8571–8574.

    Article  CAS  Google Scholar 

  41. H. Liu, X. Zhang, X. Wu, L. Jiang, C. Burda and J.-J. Zhu, Rapid Sonochemical Synthesis of Highly Luminescent Non-toxic AuNCs and Au@AgNCs and Cu(II) sensing, Chem. Commun., 2011, 47, 4237–4239.

    Article  CAS  Google Scholar 

  42. L. Yan, Y. Cai, B. Zheng, H. Yuan, Y. Guo, D. Xiao and M. M. F. Choi, Microwave-assisted Synthesis of BSA-stabilized and HSA-protected Gold Nnanoclusters with Red Emission, J. Mater. Chem., 2012, 22, 1000–1005.

    Article  CAS  Google Scholar 

  43. D. Tian, Z. Qian, Y. Xia and C. Zhu, Gold Nanocluster-Based Fluorescent Probes for Near-Infrared and Turn-On Sensing of Glutathione in Living Cells, Langmuir, 2012, 28, 3945–3951.

    Article  CAS  PubMed  Google Scholar 

  44. A. Mathew, P. R. Sajanlal and T. Pradeep, A Fifteen Atom Silver Cluster Confined in Bovine Serum Albumin, J. Mater. Chem., 2011, 21, 11205–11212.

    Article  CAS  Google Scholar 

  45. Q. Zhou, Y. Lin, M. Xu, Z. Gao, H. Yang and D. Tang, Facile Synthesis of Enhanced Fluorescent Gold−Silver Bimetallic Nanocluster and Its Application for Highly Sensitive Detection of Inorganic Pyrophosphatase Activity, Anal. Chem., 2016, 88, 8886–8892.

    Article  CAS  PubMed  Google Scholar 

  46. K. Suda, M. Terazima, H. Sato and Y. Kimura, Excitation Wavelength Dependence of Excited State Intramolecular Proton Transfer Reaction of 4′-N,N-Diethylamino-3-hydroxyflavone in Room Temperature Ionic Liquids Studied by Optical Kerr Gate Fluorescence Measurement, J. Phys. Chem. B, 2013, 117, 12567–12582.

    Article  CAS  PubMed  Google Scholar 

  47. D. Ghosh, S. Batuta, S. Das, N. A. Begum and D. Mandal, J. Phys. Chem. B, 2015, 119, 5650–5661.

  48. A. S. R. Koti, M. M. G. Krishna and N. Periasamy, Time-Resolved Area-Normalized Emission Spectroscopy (TRANES): A Novel Method for Confirming Emission from Two Excited States, J. Phys. Chem. A, 2001, 105, 1767–1771.

    Article  CAS  Google Scholar 

  49. A. S. R. Koti and N. Periasamy, Application of Time Resolved Area Normalized Emission Spectroscopy to Multicomponent Systems, J. Chem. Phys., 2010, 115, 7094–7099.

    Article  CAS  Google Scholar 

  50. T. Otosu, E. Nishimoto and S. Yamashita, Fluorescence Decay Characteristics of Indole Compounds Revealed by Time-Resolved Area-Normalized Emission Spectroscopy, J. Phys. Chem. A, 2009, 13, 2847–2853.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debabrata Mandal.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c8pp00540k

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basu, N., Mandal, D. Time-dependent emission stokes shift in Au, Ag and Au/Ag fluorescent nanoclusters: evidence of multiple emissive states. Photochem Photobiol Sci 18, 1782–1792 (2019). https://doi.org/10.1039/c8pp00540k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00540k

Navigation