Skip to main content
Log in

Stereoselective self-aggregation of synthetic zinc 31-epimeric bacteriochlorophyll-d analogs possessing a methylene group at the 132-position as models of green photosynthetic bacterial chlorosomes

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Zinc bacteriochlorophyll-d analogs possessing a methylene group at the 132-position were prepared by chemical modification of naturally occurring chlorophyll-a. The synthetic 31-epimers were successfully separated by reverse phase HPLC to give diastereomerically pure samples. The stereochemistry of the chiral C31-center in the separated bacteriochlorophyll-d analogs was determined by HPLC analysis of the authentic stereoisomers prepared stereospecifically. Both the epimers were monomeric in tetrahydrofuran to give sharp absorption bands, while they self-aggregated to form chlorosomal oligomers with red-shifted bands in an aqueous Triton X-100 micelle solution. The resulting large oligomers deaggregated by addition of Triton X-100 to give monomeric species. Their aggregation and deaggregation were dependent on the 31-stereochemistry, indicating that each epimer produced self-aggregates that were supramolecularly different. The substitution with the 132-methylene group enhanced their self-aggregation abilities and the stability of their resulting self-aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. E. Blankenship, J. M. Olson and M. Miller, Antenna complexes from green photosynthetic bacteria, in Anoxygenic Photosynthetic Bacteria, ed. R. E. Blankenship, M. T. Madigan and C. E. Bauer, Springer, Dordrecht, 1995, vol. 2, pp. 339–435.

  2. J. M. Olson, Chlorophyll organization and function in green photosynthetic bacteria, Photochem. Photobiol., 1998, 67, 61–75.

    Article  CAS  Google Scholar 

  3. R. E. Blankenship and K. Matsuura, Antenna complexes from green photosynthetic bacteria, in Light-Harvesting Antennas in Photosynthesis, ed. B. R. Green and W. W. Parson, Springer, Dordrecht, 2003, vol. 13, pp. 195–217.

  4. Y. Saga, Y. Shibata and H. Tamiaki, Spectral properties of single light-harvesting complexes in bacterial photosynthesis, J. Photochem. Photobiol., C, 2010, 11, 15–24.

    Article  CAS  Google Scholar 

  5. M. Ø. Pedersen, J. Linnanto, N.-U. Frigaard, N. C. Nielsen and M. Miller, A model of the protein–pigment baseplate complex in chlorosomes of photosynthetic green bacteria, Photosynth. Res., 2010, 104, 233–243.

    Article  CAS  Google Scholar 

  6. G. T. Oostergetel, H. van Amerongen and E. J. Boekema, The chlorosome: a prototype for efficient light harvesting in photosynthesis, Photosynth. Res., 2010, 104, 245–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. G. S. Orf and R. E. Blankenship, Chlorosome antenna complexes from green photosynthetic bacteria, Photosynth. Res., 2013, 116, 315–331.

    Article  CAS  PubMed  Google Scholar 

  8. R. A. Molina and E. Benito-Matías, Superradiance at the localization-delocalization crossover in tubular chlorosomes, Phys. Rev., 2016, 93, 022414.

    Google Scholar 

  9. D. Bína, Z. Gardian, F. Vácha and R. Litvín, Native FMO-reaction center supercomplex in green sulfur bacteria: an electron microscopy study, Photosynth. Res., 2016, 128, 93–102.

    Article  PubMed  CAS  Google Scholar 

  10. J. Dostál, J. Pšenčík and D. Zigmantas, In situ mapping of the energy flow through the entire photosynthetic apparatus, Nat. Chem., 2016, 8, 705–710.

    Article  PubMed  CAS  Google Scholar 

  11. L. M. Günther, M. Jendrny, E. A. Bloemsma, M. Tank, G. T. Oostergetel, D. A. Bryant, J. Knoester and J. Köhler, Structure of light-harvesting aggregates in individual chlorosomes, J. Phys. Chem. B, 2016, 120, 5367–5376.

    Article  PubMed  CAS  Google Scholar 

  12. J. T. Nielsen, N. V. Kulminskaya, M. Bjerring, J. M. Linnanto, M. Rätsep, M. Ø. Pedersen, P. H. Lambrev, M. Dorogi, G. Garab, K. Thomsen, C. Jegerschöld, N.-U. Frigaard, M. Lindahl and N. C. Nielsen, In situ, high-resolution structure of the baseplate antenna complex in Chlorobaculum tepidum, Nat. Commun., 2016, 7, 12454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. T. Kramer and M. Rodriguez, Two-dimensional electronic spectra of the photosynthetic apparatus of green sulfur bacteria, Sci. Rep., 2017, 7, 45245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. A. Yakovlev, A. Taisova, A. Arutyunyan, V. Shuvalov and Z. Fetisova, Variability of aggregation extent of light-harvesting pigments in peripheral antenna of Chloroflexus aurantiacus, Photosynth. Res., 2017, 133, 343–356.

    Article  CAS  PubMed  Google Scholar 

  15. R. G. Sear and R. E. Blankenship, Light harvesting in phototrophic bacteria: structure and function, Biochem. J., 2017, 474, 2107–2131.

    Article  CAS  Google Scholar 

  16. D. Coles, L. C. Flatten, T. Sydney, E. Hounslow, S. K. Saikin, A. Aspru-Guzik, V. Vedral, J.-K. H. Tang, R. A. Taylor, J. M. Smith and D. G. Lidzey, A nanophotonic structure containing living photosynthetic bacteria, Small, 2017, 13, 1701777.

    Article  CAS  Google Scholar 

  17. D. Lindorfer and T. Renger, Theory of anisotropic circular dichroism of excitonically coupled system: application to the baseplate of green sulfur bacteria, J. Phys. Chem. B, 2018, 122, 2747–2756.

    Article  CAS  PubMed  Google Scholar 

  18. A. Khmelenitskiy, R. G. Sear, R. E. Blankenship and R. Jankowiak, Excitonic energy landscape of the Y16F mutant of the Chlorobium tepidum Fenna-Matthews-Olson (FMO) complex: high resolution spectroscopic and modeling studies, J. Phys. Chem. B, 2018, 122, 3734–3743.

    Article  CAS  Google Scholar 

  19. L. M. Günther, A. Löhner, C. Reiher, T. Kunsel, T. L. C. Jansen, M. Tank, D. A. Bryant, J. Knoester and J. Köhler, Structural variations in chlorosomes from wild-type and a bchQR mutant of Chlorobaculum tepidum revealed by single-molecule spectroscopy, J. Phys. Chem. B, 2018, 122, 6712–6723.

    Article  PubMed  CAS  Google Scholar 

  20. X. Li, F. Buda, H. J. M. de Groot and G. J. A. Sevink, Contrasting models of self-assembly and hydrogenbonding heterogeneity in chlorosomes of Chlorobaculum tepidum, J. Phys. Chem. C, 2018, 122, 14877–14888.

    Article  CAS  Google Scholar 

  21. A. G. Yakovlev, A. S. Taisova, V. A. Shuvalov and Z. G. Fetisova, Estimation of the bacteriochlorophyll c oligomerization extent in Chloroflexus aurantiacus chlorosomes by very low-frequency vibrations of the pigment molecules: a new approach, Biophys. Chem., 2018, 240, 1–8.

    Article  CAS  PubMed  Google Scholar 

  22. N. C. M. Magdaong, D. M. Niedzwiedzki, R. G. Saer, C. Goodson and R. E. Blankenship, Excitation energy transfer kinetics and efficiency in phototrophic green sulfur bacteria, Biochim. Biophys. Acta, Bioenerg., 2018, 1859, 1180–1190.

    Article  CAS  Google Scholar 

  23. H. Tamiaki, R. Shibata and T. Mizoguchi, The 17-propionate function of (bacterio)chlorophylls: biological implication of their long esterifying chains in photosynthetic systems, Photochem. Photobiol., 2007, 83, 152–162.

    CAS  PubMed  Google Scholar 

  24. Y. Tsukatani, J. Harada, T. Mizoguchi and H. Tamiaki, Bacteriochlorophyll homolog compositions in the bchU mutants of green sulfur bacteria, Photochem. Photobiol. Sci., 2013, 12, 2195–2201.

    Article  CAS  PubMed  Google Scholar 

  25. D. M. Niedzwiedzki, G. S. Orf, M. Tank, K. Vogl, D. A. Bryant and R. E. Blankenship, Photophysical properties of the excited states of bacteriochlorophyll f in solvents and in chlorosomes, J. Phys. Chem. B, 2014, 118, 2295–2305.

    Article  CAS  PubMed  Google Scholar 

  26. T. Mizoguchi, J. Harada, K. Yamamoto and H. Tamiaki, Inactivation of bciD and bchU genes in the green sulfur bacterium Chlorobaculum limnaeum and alteration of photosynthetic pigments in the resultant mutants, J. Photochem. Photobiol., A, 2015, 313, 52–59.

    Article  CAS  Google Scholar 

  27. J. Harada, Y. Shibata, M. Teramura, T. Mizoguchi, Y. Kinoshita, K. Yamamoto and H. Tamiaki, In vivo excited energy transfer of bacteriochlorophyll c, d, e, or f to bacteriochlorophyll a in the wild-type and mutant cells of the green sulfur bacterium Chlorobaculum limnaeum, ChemPhotoChem, 2018, 2, 190–195.

    Article  CAS  Google Scholar 

  28. H. Tamiaki, Supramolecular structure in extramembraneous antennae of green photosynthetic bacteria, Coord. Chem. Rev., 1996, 148, 183–197.

    Article  CAS  Google Scholar 

  29. H. Tamiaki, M. Amakawa, Y. Shimono, R. Tanikaga, A. R. Holzwarth and K. Schaffner, Synthetic zinc and magnesium chlorin aggregates as models for supramolecular antenna complexes in chlorosomes of green photosynthetic bacteria, Photochem. Photobiol., 1996, 63, 92–99.

    Article  CAS  Google Scholar 

  30. S. Ganapathy, G. T. Oostergetel, P. K. Wawrzyniak, M. Reus, A. G. M. Chew, F. Buda, E. J. Boekema, D. A. Bryant, A. R. Holzwarth and H. J. M. de Groot, Alternating syn-anti bacteriochlorophylls form concentric helical nanotubes in chlorosomes, Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 8525–8530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. S.-C. Luo, Y. Khin, S.-J. Huang, Y. Yang, T. Hou, Y.-C. Cheng, H. M. Chen, Y.-Y. Chin, C.-T. Chen, H.-J. Lin, J. K.-H. Tang and J. C. C. Chan, Probing the spatial organization of bacteriochlorophyll c by solid-state nuclear magnetic resonance, Biochemistry, 2014, 53, 5515–5525.

    Article  CAS  PubMed  Google Scholar 

  32. H. Tamiaki, T. Miyatake, R. Tanikaga, A. R. Holzwarth and K. Schaffner, Self-assembly of an artificial light-harvesting antenna: energy transfer from a zinc chlorin to a bacteriochlorin in a supramolecular aggregate, Angew. Chem., Int. Ed. Engl., 1996, 35, 772–774.

    Article  CAS  Google Scholar 

  33. H. Tamiaki, Y. Shimamura, H. Yoshimura, S. K. Pandey and R. K. Pandey, Self-aggregation of synthetic zinc 3-hydroxymethyl-purpurin-18 and N-hexylimide methyl ester in an aqueous solution as models of green photosynthetic bacterial chlorosomes, Chem. Lett., 2005, 34, 1344–1345.

    Article  CAS  Google Scholar 

  34. H. Tamiaki, H. Yoshimura, Y. Shimamura and M. Kunieda, Self-aggregation behavior of synthetic zinc 3-hydroxymethyl-13/15-carbonyl-chlorins as models of main light-harvesting components in photosynthetic green bacteria, Photosynth. Res., 2008, 95, 223–228.

    Article  CAS  PubMed  Google Scholar 

  35. K. M. Smith, L. A. Kehres and J. Fajer, Aggregation of the bacteriochlorophylls c, d, and e. Models for the antenna chlorophylls of green and brown photosynthetic bacteria, J. Am. Chem. Soc., 1983, 105, 1337–1389.

    Google Scholar 

  36. P. Cheng, P. A. Liddell, S. X. C. Ma and R. E. Blankenship, Properties of zinc and magnesium methyl bacteriopheophorbide d and their aggregates, Photochem. Photobiol., 1993, 58, 290–295.

    Article  CAS  Google Scholar 

  37. H. Tamiaki, S. Takeuchi, R. Tanikaga, T. S. Balaban, A. R. Holzwarth and K. Schaffner, Diastereoselective control of aggregation of 31-epimeric zinc methyl bacteriopheophorbide-d in apolar solvents, Chem. Lett., 1994, 23, 401–402.

    Article  Google Scholar 

  38. T. S. Balaban, H. Tamiaki, A. R. Holzwarth and K. Schaffner, Self-assembly of methyl zinc (31R)- and (31S)-bacteriopheophorbide d, J. Phys. Chem. B, 1997, 101, 3424–3431.

    Article  CAS  Google Scholar 

  39. H. Tamiaki, S. Takeuchi, S. Tsudzuki, T. Miyatake and R. Tanikaga, Self-aggregation of synthetic zinc chlorins with a chiral 1-hydroxyethyl group as a model for in vivo epimeric bacteriochlorophyll-c and d aggregates, Tetrahedron, 1998, 54, 6699–6718.

    Article  CAS  Google Scholar 

  40. T. Miyatake, T. Oba and H. Tamiaki, Pure and scrambled self-aggregates prepared with zinc analogues of bacteriochlorophylls c and d, ChemBioChem, 2001, 2, 335–342.

    Article  CAS  PubMed  Google Scholar 

  41. T. Miyatake, K. Shitasue, Y. Omori, K. Nakagawa, M. Fujiwara, T. Matsushita and H. Tamiaki, Time-dependent self-assembly of 31-epimerically pure and mixed zinc methyl bacteriochlorophyll-d in an aqueous THF solution, Photosynth. Res., 2005, 86, 131–136.

    Article  CAS  PubMed  Google Scholar 

  42. T. Miyatake and H. Tamiaki, Self-aggregates of natural chlorophylls and their synthetic analogues in aqueous media for making light-harvesting systems, Coord. Chem. Rev., 2010, 254, 2593–2602.

    Article  CAS  Google Scholar 

  43. S. Machida and H. Tamiaki, Self-aggregation of synthetic zinc hydroxylated chlorophyll derivatives inside aqueous micelles: neighboring effect of additional O-functional groups, Chem. Lett., 2014, 43, 249–251.

    Article  CAS  Google Scholar 

  44. H. Watanabe, T. Mizoguchi and H. Tamiaki, Stereoselective self-aggregation of 31-epimerically pure amino analogs of zinc bacteriochlorophyll-d in an aqueous micelle solution, Photochem. Photobiol., 2016, 92, 276–285.

    Article  CAS  PubMed  Google Scholar 

  45. K. M. Smith, G. M. F. Bisset and M. J. Bushell, Partial syntheses of optically pure methyl bacteriopheophorbides c and d from methyl pheophorbide a, J. Org. Chem., 1980, 45, 2218–2224.

    Article  CAS  Google Scholar 

  46. H. Tamiaki and T. Miyatake, Synthetic zinc tetrapyrroles complexing with pyridine as a single axial ligand, Bioorg. Med. Chem., 1998, 6, 2171–2178.

    Article  CAS  PubMed  Google Scholar 

  47. J. Li, Y. Liu, X.-S. Xu, Y.-L. Li, S.-G. Zhang, I. Yoon, Y. K. Shim, J.-J. Wang and J.-G. Yin, Highly efficient synthesis of novel methyl 132-methylene mesopyropheophorbide a and its stereoselective Michael addition reaction, Org. Biomol. Chem., 2015, 13, 1992–1995.

    Article  CAS  PubMed  Google Scholar 

  48. N. Gao, S.-G. Zhang, Z. Wang and J.-J. Wang, Oxidation reactions of chlorophyll degradation products with thallium nitrate and synthesis of chlorophyllous chlorins derivatives, Chin. J. Org. Chem., 2015, 35, 1715–1725.

    Article  CAS  Google Scholar 

  49. T. Miyatake and H. Tamiaki, Self-aggregates of bacteriochlorophylls-c, d and e in a light-harvesting antenna system of green photosynthetic bacteria: effect of stereochemistry at the chiral 3-(1-hydroxyethyl) group on the supramolecular arrangement of chlorophyllous pigments, J. Photochem. Photobiol., C, 2005, 6, 89–107.

    Article  CAS  Google Scholar 

  50. K. Hirose, A practical guide for the determination of binding constants, J. Inclusion Phenom. Macrocyclic Chem., 2001, 39, 193–209.

    Article  CAS  Google Scholar 

  51. H. Tamiaki and M. Kouraba, Synthesis of chlorophyll-a homologs by Wittig and Knoevenagel reactions with methyl pyropheophorbide-d, Tetrahedron, 1997, 53, 10677–10688.

    Article  CAS  Google Scholar 

  52. H. Tamiaki, K. Tsuji, K. Kim and T. Miyatake, Preparation of mono-vinylated and formylated chlorophyll derivatives and their optical properties, Tetrahedron, 2016, 72, 4368–4376.

    Article  CAS  Google Scholar 

  53. J.-J. Wang, P. Wang, J.-Z. Li, J. Jakus and Y.-K. Shim, Synthesis of novel C12-nonmetylated chlorophyll derivatives from methyl pyropheophorbide-a by allomerization and functionalization, Bull. Korean Chem. Soc., 2011, 32, 3473–3476.

    Article  CAS  Google Scholar 

  54. Y. Li, J. Li, S. Zhang and J. Wang, Synthesis of (methylenated) vinylated chlorophyllous chlorins and study on their photosensitive bactericidal activities, Chin. J. Org. Chem., 2016, 36, 562–571.

    Article  CAS  Google Scholar 

  55. Y. Liu, H. Wu, X. Zhang, Q. Pan, X. Wang, W. Peng, J. Yin, G. Li, J. Li and J. Wang, Regioselective reactions of methyl pyropheophorbide a with formaldehyde based on hydroxymethylation, Chem. Pap., 2018, 72, 1389–1398.

    Article  CAS  Google Scholar 

  56. H. Tamiaki, S. Koizumi, K. Tsuji, Y. Kinoshita and T. Miyatake, Synthesis of chlorophyll-a derivatives possessing (un)substituted 131-exo-methylene moiety and their optical properties, Tetrahedron Lett., 2014, 55, 1093–1096.

    Article  CAS  Google Scholar 

  57. N. Inamoto and S. Masuda, Revised method for calculation of group electronegativities, Chem. Lett., 1982, 11, 1003–1006.

    Article  Google Scholar 

  58. T. Oba and H. Tamiaki, Why do chlorosomal chlorophylls lack the C132-methoxycarbonyl moiety? An in vitro model study, Photosynth. Res., 1999, 61, 23–31.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Tamiaki.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c8pp00535d

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujiwara, Y., Tamiaki, H. Stereoselective self-aggregation of synthetic zinc 31-epimeric bacteriochlorophyll-d analogs possessing a methylene group at the 132-position as models of green photosynthetic bacterial chlorosomes. Photochem Photobiol Sci 18, 1218–1227 (2019). https://doi.org/10.1039/c8pp00535d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00535d

Navigation