Skip to main content

Advertisement

Log in

Competing photochemical reactions of bis-naphthols and their photoinduced antiproliferative activity

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The photophysical properties and photochemical reactivities of a series of bis-naphthols 4a–4e and bis-anthrols 5a and 5e were investigated by preparative irradiation in CH3OH, fluorescence spectroscopy and laser flash photolysis (LFP). Methanolysis taking place via photodehydration (bis-naphthols: ΦR = 0.04–0.05) is in competition with symmetry breaking charge separation (SB-CS). The SB-CS gave rise to radical ions that were detected for 4a and 4e by LFP. Photodehydration gave quinone methides (QMs) that were also detected by LFP (λmax = 350 nm, τ ≈ 1–2 ms). In the aqueous solvent, excited state proton transfer (ESPT) competes with the abovementioned processes, giving rise to naphtholates, but the process is inefficient and can only be observed in the buffered aqueous solution at pH > 7. Since the dehydration of bis-naphthols delivers QMs, their potential antiproliferative activity was investigated by an MTT test on three human cancer cell lines (NCI-H1299, lung carcinoma; MCF-7, breast adenocarcinoma; and SUM159, pleomorphic breast carcinoma). Cells were treated with 4 or 5 with or without irradiation (350 nm). An enhancement of the activity (up to 10-fold) was observed upon irradiation, which may be associated with QM formation. However, these QMs do not cross-link DNA. The activity is most likely associated with the alkylation of proteins present in the cell cytoplasm, as evidenced by photoinduced alkylation of bovine and human serum albumins by 4a.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. Quinone Methides, ed. S. E. Rokita, Wiley, Hoboken, USA, 2009.

  2. M. Freccero, Quinone Methides as Alkylating and Cross-Linking Agents, Mini-Rev. Org. Chem., 2004, 1, 403–415.

    Article  CAS  Google Scholar 

  3. P. Wang, Y. Song, L. Zhang, H. He and X. Zhou, Quinone Methide derivatives: Important Intermediates to DNA Alkylating and DNA Cross-linking Actions, Curr. Med. Chem., 2005, 12, 2893–2913.

    Article  CAS  PubMed  Google Scholar 

  4. R. Van De Water and T. R. R. Pettus, o-Quinone methides: intermediates underdeveloped and underutilized in organic synthesis, Tetrahedron, 2002, 58, 5367–5405.

    Article  Google Scholar 

  5. T. P. Pathak and M. S. Sigman, Applications of ortho-Quinone Methide Intermediates in Catalysis and Asymmetric Synthesis, J. Org. Chem., 2011, 76, 9210–9215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. M. S. Singh, A. Nagaraju, N. Anand and S. Chowdhury, ortho-Quinone methide (o-QM): a highly reactive, ephemeral and versatile intermediate in organic synthesis, RSC Adv., 2014, 4, 55924–55959.

    Article  CAS  Google Scholar 

  7. W. J. Bai, J. G. David, Z.-G. Feng, M. G. Weaver, K.-L. Wu and T. R. R. Pettus, The Domestication of ortho-Quinone Methides, Acc. Chem. Res., 2014, 47, 3655–3664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. A. A. Jaworski and A. K. Scheidt, Emerging Roles of in Situ Generated Quinone Methides in Metal-Free Catalysis, J. Org. Chem., 2016, 81, 10145–10153.

    Article  CAS  PubMed  Google Scholar 

  9. E. Modica, R. Zanaletti, M. Freccero and M. Mella, Alkylation of Amino Acids and Glutathione in Water by o-Quinone Methide. Reactivity and Selectivity, J. Org. Chem., 2001, 66, 41–52.

    Article  CAS  PubMed  Google Scholar 

  10. S. Arumugam, J. Guo, N. E. Mbua, F. Fiscourt, N. Lin, E. Nekongo, G. J. Boons and V. V. Popik, Selective and Reversible Photochemical Derivatization of Cysteine Residues in Peptides and Proteins, Chem. Sci., 2014, 5, 1591–1598.

    Article  CAS  PubMed  Google Scholar 

  11. S. E. Rokita, J. Yang, P. Pande and W. A. Greenberg, Quinone Methide Alkylation of Deoxycytidine, J. Org. Chem., 1997, 62, 3010–3012.

    Article  CAS  PubMed  Google Scholar 

  12. W. F. Veldhuyzen, A. J. Shallop, R. A. Jones and S. E. Rokita, Thermodynamic versus Kinetic Products of DNA Alkylation as Modeled by Reaction of Deoxyadenosine, J. Am. Chem. Soc., 2001, 123, 11126–11132.

    Article  CAS  PubMed  Google Scholar 

  13. E. E. Weinert, K. N. Frankenfield and S. E. Rokita, Time-Dependent Evolution of Adducts Formed Between Deoxynucleosides and a Model Quinone Methide, Chem. Res. Toxicol., 2005, 18, 1364–1370.

    Article  CAS  PubMed  Google Scholar 

  14. E. E. Weinert, D. Ruggero, S. Colloredo-Melz, K. N. Frankenfield, C. H. Mitchell, M. Freccero and S. E. Rokita, Substituents on Quinone Methides Strongly Modulate Formation and Stability of their Nucleophilic Adducts, J. Am. Chem. Soc., 2006, 128, 11940–11947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. M. Chatterjee and S. E. Rokita, The Role of a Quinone Methide in the Sequence Specific Alkylation of DNA, J. Am. Chem. Soc., 1994, 116, 1690–1697.

    Article  CAS  Google Scholar 

  16. Q. Zeng and S. E. Rokita, Tandem Quinone Methide Generation for Cross-Linking DNA, J. Org. Chem., 1996, 61, 9080–9081.

    Article  CAS  Google Scholar 

  17. P. Pande, J. Shearer, J. Yang, W. A. Greenberg and S. E. Rokita, Alkylation of Nucleic Acids by a Model Quinone Methide, J. Am. Chem. Soc., 1999, 121, 6773–6779.

    Article  CAS  Google Scholar 

  18. D. Verga, M. Nadai, F. Doria, C. Percivalle, M. Di Antonio, M. Palumbo, S. N. Richter and M. Freccero, Photogeneration and Reactivity of Naphthoquinone Methides as Purine Selective DNA Alkylating Agents, J. Am. Chem. Soc., 2010, 132, 14625–14637.

    Article  CAS  PubMed  Google Scholar 

  19. M. Nadai, F. Doria, M. Di Antonio, G. Sattin, L. Germani, C. Percivalle, M. Palumbo, S. N. Richter and M. Freccero, Naphthalene diimide scaffolds with dual reversible and covalent interaction properties towards G-quadruplex, Biochemie, 2011, 93, 1328–1340.

    Article  CAS  Google Scholar 

  20. F. Doria, M. Nadai, M. Folini, M. Di Antonio, L. Germani, C. Percivalle, C. Sissi, N. Zaffaroni, S. Alcaro, A. Artese, S. N. Richter and M. Freccero, Hybrid ligand–alkylating agents targeting telomeric G-quadruplex structures, Org. Biomol. Chem., 2012, 10, 2798–2806.

    Article  CAS  PubMed  Google Scholar 

  21. F. Doria, M. Nadai, M. Folini, M. Scalabrin, L. Germani, G. Sattin, M. Mella, M. Palumbo, N. Zaffaroni, D. Fabris, M. Freccero and S. N. Richter, Targeting Loop Adenines in G-Quadruplex by a Selective Oxirane, Chem.Eur. J., 2013, 19, 78–81.

    Article  CAS  PubMed  Google Scholar 

  22. H. Wang, M. S. Wahi and S. E. Rokita, Immortalizing a Transient Electrophile for DNA Cross-Linking, Angew. Chem., Int. Ed., 2008, 47, 1291–1293.

    Article  CAS  Google Scholar 

  23. H. Wang, S. E. Rokita and S. E. Dynamic, Cross-Linking is Retained in Duplex DNA after Multiple Exchange of Strands, Angew. Chem., Int. Ed., 2010, 49, 5957–5960.

    Article  CAS  Google Scholar 

  24. C. S. Rossiter, E. Modica, D. Kumar and S. E. Rokita, Few constraints limit the design of quinone methide-oligonucleotide self-adducts for directing DNA alkylation, Chem. Commun., 2011, 47, 1476–1478.

    Article  CAS  Google Scholar 

  25. F. Fakhari and S. E. Rokita, A walk along DNA using bipedal migration of a dynamic and covalent crosslinker, Nat. Commun., 2014, 5, 5591, DOI: 10.1038/ncomms6591.

    Article  CAS  PubMed  Google Scholar 

  26. V. S. Li and H. Kohn, Studies on the Bonding Specificity for Mitomycin C-DNA Monoalkylation Processes, J. Am. Chem. Soc., 1991, 113, 275–283.

    Article  Google Scholar 

  27. I. Han, D. J. Russell and H. Kohn, Studies on the Mechanism of Mitomycin C(1) Electrophilic Transformations: Structure-Reactivity Relationships, J. Org. Chem., 1992, 57, 1799–1807.

    Article  CAS  Google Scholar 

  28. M. Tomasz, A. Das, K. S. Tang, M. G. J. Ford, A. Minnock, S. M. Musser and M. J. Waring, The Purine 2-Amino Group as the Critical Recognition Element for Sequence-Specific Alkylation and Cross-Linking of DNA by Mitomycin C, J. Am. Chem. Soc., 1998, 120, 11581–11593.

    Article  CAS  Google Scholar 

  29. N. Basarić, K. Mlinarić-Majerski and M. Kralj, Quinone Methides: Photochemical Generation and its Application in Biomedicine, Curr. Org. Chem., 2014, 18, 3–18.

    Article  CAS  Google Scholar 

  30. C. Percivalle, F. Doria and M. Freccero, Quinone Methides as DNA Alkylating Agents: An Overview on Efficient Activation Protocols for Enhanced Target Selectivity, Curr. Org. Chem., 2014, 18, 19–43.

    Article  CAS  Google Scholar 

  31. K. Nakatani, N. Higashida and I. Saito, Highly Efficient Photochemical Generation of o-Quinone Methide from Mannich Bases of Phenol Derivatives, Tetrahedron Lett., 1997, 38, 5005–5008.

    Article  CAS  Google Scholar 

  32. Đ. Škalamera, C. Bohne, S. Landgraf and N. Basarić, Photodeamination reaction mechanism in aminomethyl p-cresol derivatives: different reactivity of amines and ammonium salts, J. Org. Chem., 2015, 80, 10817–10828.

    Article  PubMed  CAS  Google Scholar 

  33. L. Diao, C. Yang and P. Wan, Quinone Methide Intermediates from the Photolysis of Hydroxybenzyl Alcohols in Aqueous Solution., J. Am. Chem. Soc., 1995, 117, 5369–5370.

    Article  CAS  Google Scholar 

  34. Đ. Škalamera, I. Antol, K. Mlinarić-Majerski, H. Vančik, D. L. Phillips, J. Ma and N. Basarić, Ultrafast Adiabatic Photodehydration of 2-Hydroxymethylphenol and the Formation of Quinone Methide, Chem.Eur. J., 2018, 24, 9426–9435.

    Article  PubMed  CAS  Google Scholar 

  35. N. Basarić, N. Cindro, D. Bobinac, K. Mlinarić-Majerski, L. Uzelac, M. Kralj and P. Wan, Sterically Congested Quinone Methides in Photodehydration Reactions of 4-Hydroxybiphenyl Derivatives and Investigation of their Antiproliferative Activity, Photochem. Photobiol. Sci., 2011, 10, 1910–1925.

    Article  PubMed  CAS  Google Scholar 

  36. N. Basarić, N. Cindro, D. Bobinac, L. Uzelac, K. Mlinarić-Majerski, M. Kralj and P. Wan, Zwitterionic Biphenyl Quinone Methides in Photodehydration Reactions of 3-Hydroxybiphenyl Derivatives: Laser Flash Photolysis and Antiproliferation Study, Photochem. Photobiol. Sci., 2012, 11, 381–396.

    Article  PubMed  CAS  Google Scholar 

  37. J. Veljković, L. Uzelac, K. Molčanov, K. Mlinarić-Majerski, M. Kralj, P. Wan and N. Basarić, Sterically Congested Adamantylnaphthalene Quinone Methides, J. Org. Chem., 2012, 77, 4596–4610.

    Article  PubMed  CAS  Google Scholar 

  38. Đ. Škalamera, K. Mlinarić-Majerski, I. Martin Kleiner, M. Kralj, J. Oake, P. Wan, C. Bohne and N. Basarić, Photochemical Formation of Anthracene Quinone Methide Derivatives, J. Org. Chem., 2017, 82, 6006–6021.

    Article  PubMed  CAS  Google Scholar 

  39. L. Uzelac, Đ. Škalamera, K. Mlinarić-Majerski, N. Basarić and M. Kralj, Selective photocytotoxicity of anthrols on cancer stem-like cells: The effect of quinone methides or reactive oxygen species, Eur. J. Med. Chem., 2017, 137, 558–574.

    Article  CAS  PubMed  Google Scholar 

  40. M. Sambol, K. Ester, A. Husak, Đ. Škalamera, I. Piantanida, M. Kralj and N. Basarić, Bifunctional Phenol Quinone Methide Precursors: Synthesis and Biological Activity, Croat. Chem. Acta, DOI: 10.5562/cca3455.

  41. S. R. Rajski and R. M. Williams, DNA Cross-Linking Agents as Antitumor Drugs, Chem. Rev., 1998, 98, 2723–2725.

    Article  CAS  PubMed  Google Scholar 

  42. S. Arumugam and V. V. Popik, Photochemical Generation and the Reactivity of o-Naphthoquinone Methides in Aqueous Solutions, J. Am. Chem. Soc., 2009, 131, 11892–11899.

    Article  CAS  PubMed  Google Scholar 

  43. V. Markovic, D. Villamaina, I. Barbanov, L. M. Lawson Daku and E. Vauthey, Photoinduced Symmetry-Breaking Charge Separation: The Direction of the Charge Transfer, Angew. Chem., Int. Ed., 2011, 50, 7596–7598.

    Article  CAS  Google Scholar 

  44. M. Montalti, A. Credi, L. Prodi and M. T. Gandolfi, in Handbook of Photochemistry, CRC Taylor and Francis, Boca Raton, 2006.

  45. S. Goldstein and J. Rabani, The ferrioxalate and iodideiodate actinometers in the UV region, J. Photochem. Photobiol., A, 2008, 193, 50–55.

    Article  CAS  Google Scholar 

  46. W. R. Laws and L. Brand, Analysis of Two-State Excited-State Reactions. The Fluorescence Decay of 2-Naphthol, J. Phys. Chem., 1979, 83, 795–802.

    Article  CAS  Google Scholar 

  47. J. Lee, G. W. Robinson, S. P. Webb, L. A. Philips and J. H. Clark, Hydration dynamics of protons from photon initiated acids, J. Am. Chem. Soc., 1986, 108, 6538–6542.

    Article  CAS  Google Scholar 

  48. G. W. Robinson, Proton charge transfer involving the water solvent, J. Phys. Chem., 1991, 95, 10386–10391.

    Article  CAS  Google Scholar 

  49. L. M. Tolbert and J. E. Haubrich, Photoexcited proton transfer from enhanced photoacids, J. Am. Chem. Soc., 1994, 116, 10593–10600.

    Article  CAS  Google Scholar 

  50. K. M. Solntsev, D. Huppert, N. Agmon and L. M. Tolbert, Photochemistry of “super” photoacids. 2. Excited-state proton transfer in methanol/water mixtures, J. Phys. Chem. A, 2000, 104, 4658–4669.

    Article  CAS  Google Scholar 

  51. L. M. Tolbert and K. M. Solntsev, Excited-State Proton Transfer: From Constrained Systems to “Super” Photoacids to Superfast Proton Transfer, Acc. Chem. Res., 2002, 35, 19–27.

    Article  CAS  PubMed  Google Scholar 

  52. A. M. Brouwer, Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report), Pure Appl. Chem., 2011, 83, 2213–2228.

    Article  CAS  Google Scholar 

  53. J. F. Ireland and P. A. H. Wyatt, Acid-Base Properties of Electronically Excited States of Organic Molecules, Adv. Phys. Org. Chem., 1976, 12, 131–221.

    CAS  Google Scholar 

  54. A. Liu, M. C. Sauer, Jr., D. M. Loffredo and A. D. Trifunac, Transient Absorption Spectra of Aromatic Radical Cations in Hydrocarbon Solutions, J. Photochem. Photobiol., A, 1992, 67, 197–208.

    Article  CAS  Google Scholar 

  55. C. Kerzig and M. Goez, Highly Efficient Green-Light Ionization of an Aryl Radical Anion: Key Step in a Catalytic Cycle of Electron Formation, Phys. Chem. Chem. Phys., 2014, 16, 25342–25349.

    Article  CAS  PubMed  Google Scholar 

  56. E. Vauthey, E. Haselbach and P. Suppan, Photoionization of Naphthalene and Anthracene in Acetonitrile, Helv. Chim. Acta, 1987, 70, 347–353.

    Article  CAS  Google Scholar 

  57. T. Shida and S. Iwata, Electronic Spectra of Ion Radicals and Their Molecular Orbital Interpretation. 111. Aromatic Hydrocarbons, J. Am. Chem. Soc., 1973, 95, 3473–3783.

    Article  CAS  Google Scholar 

  58. L. Pretali, F. Doria, D. Verga, A. Profumo and M. Freccero, Photoarylation/Alkylation of Bromonaphthols, J. Org. Chem., 2009, 74, 1034–1041.

    Article  CAS  PubMed  Google Scholar 

  59. T. A. Gadosy, D. Shukla and L. J. Johnston, Generation, Characterization, and Deprotonation of Phenol Radical Cations, J. Phys. Chem. A, 1999, 103, 8834–8839.

    Article  CAS  Google Scholar 

  60. Y. Chiang, A. J. Kresge and Y. Zhu, Kinetics and Mechanisms of Hydration of o-Quinone Methides in Aqueous Solution, J. Am. Chem. Soc., 2000, 122, 9854–9855.

    Article  CAS  Google Scholar 

  61. I. Vaya, V. Lhiaubert-Vallet, M. Consuelo Jiménez and M. A. Miranda, Photoactive assemblies of organic compounds and biomolecules: drug-protein supramolecular systems, Chem. Soc. Rev., 2014, 43, 4102–4122.

    Article  CAS  PubMed  Google Scholar 

  62. R. Pérez-Ruiz, O. Molins-Molina, E. Lence, C. González-Bello, M. A. Miranda and M. Consuelo Jiménez, Photogeneration of Quinone Methides as Latent Electrophiles for Lysine Targeting, J. Org. Chem., 2018, 83, 13019–13029.

    Article  PubMed  CAS  Google Scholar 

  63. E. Ahmad, G. Rabbani, N. Zaidi, S. Singh, M. Rehan, M. M. Khan, S. K. Rahman, Z. Quadri, M. Shadab, M. T. Ashraf, N. Subbarao, R. Bhat and R. H. Khan, Stereo-Selectivity of Human Serum Albumin to Enantiomeric and Isoelectronic Pollutants Dissected by Spectroscopy, Calorimetry and Bioinformatics, PLoS One, 2011, 6, e26186 1–e2618618.

  64. A. Gajahi Soudahome, A. Catan, P. Giraud, S. Assouan Kouao, A. Guerin-Dubourg, X. Debussche, N. Le Moullec, E. Bourdon, S. B. Bravo, B. Paradela-Dobarro, E. Álvarez, O. Meilha, P. Rondeau and J. Couprie, Glycation of human serum albumin impairs binding to the glucagon-like peptide-1 analogue liraglutide, J. Biol. Chem., 2018, 293, 4778–4791.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikola Basarić.

Additional information

Electronic supplementary information (ESI) available: Synthetic procedures, fluorescence and LFP data, noncovalent binding to albumins, mass spectra measured by MALDI-TOF/TOF of BSA and HSA after photochemical alkylation, DNA cross-linking and antiproliferative data, 1H and 13C NMR spectra for all new compounds. See DOI: 10.1039/c8pp00532j

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sambol, M., Ester, K., Landgraf, S. et al. Competing photochemical reactions of bis-naphthols and their photoinduced antiproliferative activity. Photochem Photobiol Sci 18, 1197–1211 (2019). https://doi.org/10.1039/c8pp00532j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00532j

Navigation