Skip to main content
Log in

Different irradiances of UV and PAR in the same ratios alter the flavonoid profiles of Arabidopsis thaliana wild types and UV-signalling pathway mutants

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The UVR8 photoreceptor in Arabidopsis thaliana is specific for ultraviolet-B (UV-B; 280–315 nm) radiation and its activation leads to a number of UV-B acclimation responses, including the accumulation of flavonoids. UVR8 participates in a signaling cascade involving COP1 and HY5 so that the absence of any of these components results in a reduction in the ability of a plant to accumulate flavonoids in response to UV; Cop1 mutants show high dropouts and hy5-ks50 hyh double mutants show very low levels of flavonoids. The predominant phenolics in Arabidopsis thaliana are sinapic acid derivatives as well as non-aclyated quercetin and kaempferol di- and triglycosides containing glucose and rhamnose as glycosylated sugar moieties. How this flavonoid profile in Arabidopsis thaliana is affected by UV radiation, how rapidly these changes occur in changing UV conditions, and which components of the UV-B signalling pathway are involved in rapid UV acclimatization reactions is poorly understood. In the present study, we examined these questions by characterizing the flavonoid profiles of Arabidopsis thaliana signalling mutants and wild types grown under different UV levels of constant UV-B+PAR ratios and then transferring a subset of plants to alternate UV conditions. Results indicate that flavonoid accumulation in Arabidopsis thaliana is triggered by UV and this response is amplified by higher levels of UV but not by all compounds to the same extent. The catechol structure in quercetin seems to be less important than the glycosylation pattern, e.g. having 2 rhamnose moieties in determining responsivity. At low UV+PAR intensities the introduction of UV leads to an initial tendency of increase of flavonoids in the wild types that was detected after 3 days. It took 7 days for these changes to be detected in plants grown under high UV+PAR intensities suggesting a priming of PAR. Thus, the flavonoid profile in Arabidopsis thaliana is altered over time following exposure to UV and PAR, but the functional significance of these changes is currently unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. K. Jansen and J. F. Bornman, Physiol. Plant., 2012, 145(4), 501.

  2. D. Verdaguer, M. A. K. Jansen, L. Llorens, L. O. Morales and S. Neugart, Plant Sci., 2017, 255(Suppl. C), 72.

  3. B. R. Jordan, Funct. Plant Biol., 2002, 29(8), 909.

  4. K. R. Albert, T. N. Mikkelsen, H. Ro-Poulsen, M. F. Arndal and A. Michelsen, Environ. Exp. Bot., 2011, 73, 10.

    Article  CAS  Google Scholar 

  5. E. Hideg, M. A. K. Jansen and A. Strid, Trends Plant Sci., 2013, 18(2), 107.

  6. M. Heijde and R. Ulm, Trends Plant Sci., 2012, 17(4), 230.

  7. G. I. Jenkins, The Plant Cell, 2014, 26(1), 21.

  8. A. B. Britt, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1996, 47, 75.

    Article  CAS  Google Scholar 

  9. M. M. Caldwell, R. Robberecht and S. D. Flint, Physiol. Plant., 1983, 58(3), 445.

  10. L. G. Landry, C. Chapple and R. L. Last, Plant Physiol., 1995, 109(4), 1159.

  11. G. Agati, C. Brunetti, M. Di Ferdinando, F. Ferrini, S. Pollastri and M. Tattini, Plant Physiol. Biochem., 2013, 72, 35.

    Article  CAS  Google Scholar 

  12. L. Rizzini, J.-J. Favory, C. Cloix, D. Faggionato, A. O’Hara, E. Kaiserli, R. Baumeister, E. Schäfer, F. Nagy, G. I. Jenkins and R. Ulm, Science, 2011, 332(6025), 103.

  13. L. O. Morales, M. Brosche, J. Vainonen, G. I. Jenkins, J. J. Wargent, N. Sipari, A. Strid, A. V. Lindfors, R. Tegelberg and P. J. Aphalo, Plant Physiol., 2013, 161(2), 744.

  14. C. Lang-Mladek, L. S. Xie, N. Nigam, N. Chumak, M. Binkert, S. Neubert and M. T. Hauser, Physiol. Plant., 2012, 145(4), 527.

  15. B. A. Brown, C. Cloix, G. H. Jiang, E. Kaiserli, P. Herzyk, D. J. Kliebenstein and G. I. Jenkins, Proc. Natl. Acad. Sci. U. S. A., 2005, 102(50), 18225.

  16. J. J. Favory, A. Stec, H. Gruber, L. Rizzini, A. Oravecz, M. Funk, A. Albert, C. Cloix, G. I. Jenkins, E. J. Oakeley, H. K. Seidlitz, F. Nagy and R. Ulm, EMBO J., 2009, 28(5), 591.

  17. G. Agati and M. Tattini, New Phytol., 2010, 186(4), 786.

  18. K. Saito, K. Yonekura-Sakakibara, R. Nakabayashi, Y. Higashi, M. Yamazaki, T. Tohge and A. R. Fernie, Plant Physiol. Biochem., 2013, 72, 21.

    Article  CAS  Google Scholar 

  19. M. A. K. Jansen, K. Hectors, N. M. O’Brien, Y. Guisez and G. Potters, Plant Sci., 2008, 175(4), 449.

  20. P. Majer, S. Neugart, A. Krumbein, M. Schreiner and É. Hideg, Environ. Exp. Bot., 2014, 100, 1.

    Article  CAS  Google Scholar 

  21. M. Fiol, S. Adermann, S. Neugart, S. Rohn, C. Mügge, M. Schreiner, A. Krumbein and L. W. Kroh, Food Res. Int., 2012, 47(1), 80.

  22. L. C. Olsson, M. Veit, G. Weissenbock and J. F. Bornman, Phytochemistry, 1998, 49(4), 1021.

  23. B. Harbaum-Piayda, B. Walter, G. B. Bengtsson, E. M. Hubbermann, W. Bilger and K. Schwarz, Postharvest Biol. Biotechnol., 2010, 56(3), 202.

  24. S. Neugart, M. Zietz, M. Schreiner, S. Rohn, L. W. Kroh and A. Krumbein, Physiol. Plant., 2012, 145(4), 582.

  25. S. Neugart, M. Fiol, M. Schreiner, S. Rohn, R. Zrenner, L. W. Kroh and A. Krumbein, J. Agric. Food Chem., 2014, 62(18), 4054.

  26. C. M. M. Gachon, M. Langlois-Meurinne and P. Saindrenan, Trends Plant Sci., 2005, 10(11), 542.

  27. D. Bowles, E. K. Lim, B. Poppenberger and F. E. Vaistij, Annu. Rev. Plant Biol., 2006, 57, 567.

    Article  CAS  Google Scholar 

  28. O. Rechner, S. Neugart, M. Schreiner, S. Wu and H. M. Poehling, J. Chem. Ecol., 2016, 42(10), 989.

  29. M. Moreira-Rodríguez, V. Nair, J. Benavides, L. Cisneros-Zevallos and D. A. Jacobo-Velázquez, Molecules, 2017, 22, 1065.

    Article  Google Scholar 

  30. A. Edreva, Agric., Ecosyst. Environ., 2005, 106(2–3), 135.

  31. I. Hernandez, L. Alegre, F. van Breusegem and S. Munne-Bosch, Trends Plant Sci., 2009, 14(3), 125.

  32. C. A. Mazza, H. E. Boccalandro, C. V. Giordano, D. Battista, A. L. Scopel and C. L. Ballare, Plant Physiol., 2000, 122(1), 117.

  33. L. P. R. Bidel, S. Meyer, Y. Goulas, Y. Cadot and Z. G. Cerovic, J. Photochem. Photobiol., B, 2007, 88(2), 163.

  34. C. E. Williamson, R. G. Zepp, R. M. Lucas, S. Madronich, A. T. Austin, C. L. Ballaré, M. Norval, B. Sulzberger, A. F. Bais, R. L. McKenzie, S. A. Robinson, D.-P. Häder, N. D. Paul and J. F. Bornman, Nat. Clim. Change, 2014, 4, 434–446.

    Article  Google Scholar 

  35. J. F. Bornman, P. W. Barnes, S. A. Robinson, C. L. Ballare, S. D. Flint and M. M. Caldwell, Photochem. Photobiol. Sci., 2015, 14(1), 88.

  36. P. S. Searles, S. D. Flint and M. M. Caldwell, Oecologia, 2001, 127(1), 1.

  37. P. W. Barnes, T. M. Robson, M. A. Tobler, I. N. Bottger and S. D. Flint, UV-B Radiation and Plant Life. Chapter Molecular Biology to Ecology, ed. B. Jordan, CABI International, 2017, p. 72.

  38. M. Goetz, A. Albert, S. Stich, W. Heller, H. Scherb, A. Krins, C. Langebartels, H. K. Seidlitz and D. Ernst, Protoplasma, 2010, 243(1–4), 95.

  39. G. I. Jenkins, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 2009, 153A(2), S203–S203.

  40. M. M. Caldwell, Solar UV irradiation and the growth and development of higher plants, Academic Press, New York, 1971.

  41. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak and A. Cardona, Nat. Methods, 2012, 9(7), 676.

  42. S. Neugart, S. Baldermann, B. Ngwene, J. Wesonga and M. Schreiner, Food Res. Int., 2017, 100, 411.

    Article  CAS  Google Scholar 

  43. S. Schmidt, M. Zietz, M. Schreiner, S. Rohn, L. W. Kroh and A. Krumbein, Rapid Commun. Mass Spectrom., 2010, 24(14), 2009.

  44. P. Majer and E. Hideg, Emir. J. Food Agric., 2012, 24(6), 598.

  45. G. Agati, Z. G. Cerovic, P. Pinelli and M. Tattini, Environ. Exp. Bot., 2011, 73, 3.

    Article  CAS  Google Scholar 

  46. P. W. Barnes, M. A. Tobler, K. Keefover-Ring, S. D. Flint, A. E. Barkley, R. J. Ryel and R. L. Lindroth, Plant, Cell Environ., 2016, 39(1), 222.

  47. D. J. Kliebenstein, J. E. Lim, L. G. Landry and R. L. Last, Plant Physiol., 2002, 130(1), 234.

  48. P. W. Barnes, A. R. Kersting, S. D. Flint, W. Beyschlag and R. J. Ryel, Physiol. Plant., 2013, 149(2), 200.

  49. R. Yin, M. Y. Skvortsova, S. Loubery and R. Ulm, Proc. Natl. Acad. Sci. U. S. A., 2016, 113(30), E4415–E4422.

  50. A. Oravecz, A. Baumann, Z. Máté, A. Brzezinska, J. Molinier, E. J. Oakeley, É. Ádám, E. Schäfer, F. Nagy and R. Ulm, Plant Cell, 2006, 18(8), 1975.

  51. R. Stracke, J. J. Favory, H. Gruber, L. Bartelniewoehner, S. Bartels, M. Binkert, M. Funk, B. Weisshaar and R. Ulm, Plant, Cell Environ., 2010, 33(1), 88.

  52. K. Tilbrook, A. B. Arongaus, M. Binkert, M. Heijde, R. Yin and R. Ulm, Arabidopsis Book, 2013, 11, e0164.

    Article  Google Scholar 

  53. A. Gaudinier, M. Tang and D. J. Kliebenstein, Curr. Plant Biol., 2015, 3–4, 56.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c8pp00496j

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neugart, S., Tobler, M.A. & Barnes, P.W. Different irradiances of UV and PAR in the same ratios alter the flavonoid profiles of Arabidopsis thaliana wild types and UV-signalling pathway mutants. Photochem Photobiol Sci 18, 1685–1699 (2019). https://doi.org/10.1039/c8pp00496j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00496j

Navigation